PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 22 | 3 |

Tytuł artykułu

Feed-efficient ruminant production: opportunities and challenges

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Feed-efficient ruminant production is a key topic in the further development of ruminant husbandry all over the world. Ruminants contribute substantially to human nutrition by production of milk and meat. They are also extremely useful for mankind by providing other important products and labour, such as skins, clothing, bones, dung, heating material, and working as draft animals, etc. The microorganisms in the rumen of ruminants are able to process lignocellulose from low quality roughage into volatile fatty acids and energy, to transfer non-protein nitrogen, such as urea, into microbial protein, and to synthesize B vitamins. Therefore, ruminants are able to produce food of animal origin without competition for feed with non-ruminants and man. On the other hand, gas methane (CH4 ) with a high greenhouse gas potential is an unavoidable by-product of rumen fermentation. Furthermore, growing ruminants are characterized by a low growing potential (daily yield in edible protein < 0.05% of body weight). The objectives of ruminant breeding, nutrition and keeping/management should, therefore, be to maximize/optimize the advantages of ruminants and to minimize their disadvantages. Feed-efficient ruminant production is viewed as a complex system starting with plant and animal breeding. More systemic approaches are considered necessary to understand interactions and to find acceptable solutions for complex relationships in the context of food security, resource efficiency, as well environmental, social and economic aspects.

Wydawca

-

Rocznik

Tom

22

Numer

3

Opis fizyczny

p.177-187,fig.,ref.

Twórcy

  • Institute of Animal Nutrition, Fredrich-Loeffler-Institute (FLI), Federal Research Centre of Animal Health, Bundesalle 50, 38116 Braunschweig, Germany
autor
  • Food GmbH-Analytic Consulting, Orlaweg 2, 07743 Jena, Germany
autor
  • Institute of Animal Nutrition, Fredrich-Loeffler-Institute (FLI), Federal Research Centre of Animal Health, Bundesalle 50, 38116 Braunschweig, Germany

Bibliografia

  • Aerts S., 2012. Agriculture´s 6 F´s and the need for more intensive agriculture. In: T. Potthast, S. Meisch (Editors). Climate Change and Sustainable Development. Wageningen Academic Publishers, pp. 192–195
  • Alexandratos N., Bruinsma J., 2012. World Agriculture Towards 2030/2050: The 2012 revision. FAO, Rome (Proof)
  • Baldwin R.L., 1995. Modelling Ruminant Digestion and Metabolism. Chapman & Hall Ltd. London, UK
  • Beauchemin K.A., Kreuzer M., O´Mara F., McAllister T.A., 2008. Nutritional management for enteric methane abatement: a review. Aust. J. Exp. Agr. 48, 21–27
  • Beever D.E., Sutton J.D., Reynolds C.K., 2001. Increasing the protein content of cow´s milk. Aust. J. Dairy Technol. 56,138–149
  • Brade W., Daemmgen U., Lebzien P., Flachowsky G., 2008. Influence of breeding measurements to change milk fat protein ratio and the influence of greenhouse gas emission by dairy cattle (in German). Züchtungskunde 80, 360–369
  • Breustedt G., Qaim M., 2012. Hunger in the world – Facts, sauses, recommendations (in German). Ernähr. Umsch. 59, 448–455
  • Cederberg C., Stadig M., 2003. System expansion and allocation in life cycle assessment of milk and beef production. Int. J. Life Cycle Assess. 8, 360–356
  • Colman D.R., Beever D.E., Jolly R.W., Drackley J.K., 2011. Gaining from technology for improved dairy cow nutrition: Economic, environmental, and animal health benefits. Prof. Anim. Sci. 27, 505–517
  • Daemmgen U., Haenel H.-D., 2008. Emissions of greenhouse gases and gaseous air pollutants – a challenge for animal nutrition. Proc. Soc. Nutr. Physiol. 17, 163–167
  • DEFRA, 2006. Determination the environmental burdens and resource use in the production of agriculture and horticulture commodities. Defra project report 2005, Cranfield, University Silsoe Inst. http://www.cranfield.ac.uk
  • Deikman J., Petracek M., Heard J.E., 2012. Drought tolerance through biotechnology: improving translation from the laboratory to farmers` fields. Curr. Opin. Biotechnol. 23, 243–250
  • De Vries M., de Boer I.J.M., 2010. Comparing environmental impacts for livestock products: A review of life cycle assessments. Livest. Sci. 128, 1–11
  • D`Mello J.P.F., 2011. Amino Acids. In: Human Nutrition and Health. CAB International, Wallingford and Cambridge, pp. 544
  • Dobbs R., Oppenheim J., Thompson F., Brinkmann M., Zornes M., 2011. Resource revolution: Meeting the world´s energy, materials, food and water needs. McKinsey Global Institute, McKinsey Sustainability & Resource Productivity Practice, Nov. 2011, pp. 20
  • Easterling W.E., Aggarwal P.K., Batima P. et al., 2007. Food, fibre and forest products. In: M.L. Parry, O.F. Canziani, J.P. Palutikof, P.J. van der Linden, C.E. Hanson (Editors). Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp. 273–313
  • Ellis J.L., Bannink A., France J., Kebreab E., Dijkstra J., 2010. Evaluation of enteric methane prediction equation for dairy cows used in the whole farm models. Global Change Biol. 16, 3246–3256
  • FAO, 2009a. The State of Food and Agriculture – Livestock in the Balance. Rome, pp. 180
  • FAO, 2009b. How to Feed the World in 2050. Rome, pp. 120
  • FAO, 2010. Greenhouse Gas Emissions from the Dairy Sector. A Life Cycle Ass. Rome, pp. 94
  • FAOSTAT, 2012. Statistical Database. Food and Agriculture Organization of the United Nations. <http://faostat.fao.org/default.aspx?lang=en>
  • Fedoroff N.V., Battisti D.S., Beachy R.N. et al., 2010. Radically rethinking agriculture for the 21th century. Science 327, 833–834
  • Feitz A.J., Lundie S., Dennien G., Morian M., Jones M., 2007. Generation of an industry-specific physico-chemical allocation matrix, application in the dairy industry and implications for system analysis. Int. J. Life Cycle Assess. 12, 109–117
  • Fievez V., Goel G., Boeckaert C., Vlaeminck B., 2010. Potential of fatty acids in mitigating ruminal methanogenesis. In: J. Doppenberg, P. Van der Aar (Editors). Dynamics in Animal Nutrition. Wageningen Academic Publishers, pp. 161–184
  • Fink-Gremmels J. (Editor), 2012. Animal Feed Contamination – Effects on livestock and Food Safety. Woodhead Publ. Lim., Oxford, pp. 672
  • Flachowsky G., 2002. Efficiency of energy and nutrient use in the production of edible protein of animal origin. J. Appl. Anim. Res. 22, 1–24
  • Flachowsky G., 2006. Possibilities of decontamination of ‘Undesirable substances of Annex 5 of the feed law’ (in German). Landbauforschung Völkenrode – FAL Agr. Res., Special Issue 294, pp. 290
  • Flachowsky G., 2008. What do animal nutritionists expect from plant breeding? Outlook Agr. 37, 95–103
  • Flachowsky G., 2010. Global food security: Is there any solution? (in German). NovoArgumente 105. 3–4, 64–68.
  • Flachowsky G., 2011. Carbon-footprints for food of animal origin, reduction potentials and research need. J. Appl. Anim. Res. 39, 2–14
  • Flachowsky G., 2013. Animal Nutrition with Transgenic Plants. CABI, pp. 250 (in press)
  • Flachowsky G., Brade W., 2007. Potentials of reduction of methane emissions by ruminants (in German). Züchtungskunde 79, 417–465
  • Flachowsky G., Brade W., Feil A., Kamphues J., Meyer U., Zehetmeyer M., 2011. Carbon (CO2)-footprints for producing food of animal origin – Data base and reduction potentials (in German). Übersicht. Tierernähr. 39, 1–45
  • Flachowsky G., Hachenberg S., 2009. CO2-footprints for food of animal origin – Present stage and open questions. J. Consumer Protection Food Safety 4, 190–198
  • Flachowsky G., Kamphues J., 2012. Carbon footprints for food of animal origin: What are the most preferable criteria to measure animal yields? Animals 2, 108–126
  • Flachowsky G., Meyer U., Gruen M., 2013. Plant and animal breeding as starting points for sustainable agriculture. In: E. Lichtfouse (Editor). Sustainable Agriculture Reviews 12, 201–224
  • Flysjö A., Cederberg C., Henriksson M., Ledgard S., 2011. How does co-product handling affect the carbon footprint of milk? Case study of milk production in New Zealang and Sweden. Int. J. Life Cycle Assess.16, 420–430
  • Foley J.A., Ramankutty N., Brauman K.A. et al., 2011. Solutions for a cultivated planet. Nature 478, 337–342
  • Gerber P., Villinga T., Opio C., Steinfeld H., 2011. Productivity gains and greenhouse gas emissions intensity in dairy systems. Livest. Sci. 139, 100–108
  • GfE (Gesellschaft für Ernährungsphysiologie), 2001. Recommendations for Energy and Nutrient Requirements of Dairy Cattle and Heifers, No. 8 (in German). DLG-Verlags-GmbH, Frankfurt/M, pp. 135
  • Giovannucci D., Scherr S., Nierenberg D., Hebebrand C., Shapiro J., Milder J., Wheeler K., 2012. Food and Agriculture: The Future of Sustainability. A Strategic Input to the Sustainable Development in the 21st Century (SD21) project. New York: United Nations Department of Economic and Social Affairs, Division for Sustainable Development
  • Godfray H.C., Beddington J.R., Crute I.R., Haddad L., Wawrence D., Muir J., Pretty J., Robinson S., Thomas S.M., Toulmin C., 2010. Food security: The challenge of feeding 9 billion people. Science 327, 812–818
  • Grünberg J., Nieberg H., Schmidt T., 2010. Treibhausgasbilanzierung von Lebensmitteln (Carbon Footprints): Überblick und kritische Reflektion (in German). Landbauforsch. vTI Ag. 60, 53–72
  • Hall D.C, Hall J.V., 1984. Concepts and measures of natural-resource scarcity with a summary of recent trends. J. Environ. Econ. Manage. 11, 363–379
  • Hegarty R.S., 2005. Genotype differences and their impact on digestive tract function of ruminants: a review. Aust. J. Exp. Agr. 44, 459–467
  • Hindrichsen I.K., Wettstein H.R., Machmüller A., Jörg B., Kreuzer M., 2005. Effect of the carbohydrate composition of feed concentrates on methane emission from dairy cows and their slurry. Environ. Monit. Assess. 107, 329–350
  • HLPE (High Level Panel of Experts on Food Security and Nutrition), 2012a. Food Security and Climate Change. A report by the High Level Panel of Experts on Food Security and Nutrition, June 2012; Committee on World Food Security. FAO, Rome, pp. 98
  • HLPE (High Level Panel of Experts on Food Security and Nutrition), 2012b. Investing in Smallholder Agriculture for Food and Nutrition Security (V0 Draft), A zero-draft consultation paper. Dec. 20th 2012, pp. 77
  • HLPE (High Panel of Experts on Food Security and Nutrition) 2013. Biofuels and Food Security (V0 Draft). A zero-draft consultation paper. Jan. 9th 2013, pp. 72
  • Hoekstra A.Y., Champaign A.K., 2007. Water footprints of nations: Water use by people as a function of their consumption pattern. Water Resour. Manage 21, 35–48
  • Huhtanen P., Hristov A.N., 2009. A meta-analysis of the effects of dietary protein concentration and degradability on milk protein yield and milk N efficiency in dairy cows. J. Dairy Sci. 92, 3222–3232
  • IPCC (Intergovernmental Panel on Climate Change), 2006. IPCC Guidelines for National Greenhouse Gas Inventories, IPCC, Bracknell (UK)
  • IPCC (Intergovernmental Panel on Climate Change), 2012. Managing
  • the Risks of Extreme Events and Disasters to Advance Climate Change Adaption (SREX), IPCC, Geneve (Switzerland)
  • Jackson A.A., 2007. Protein. In: J. Mann, S. Truswell (Editors). Essentials of Human Nutrition. 3rd Edition. Oxford Universiity Press, pp. 53–72
  • Kebreab E., 2013. Sustainable animal agriculture. CABI (in press, pp. 352)
  • Kebreab E., Clark K., Wagner-Riddle K., France J., 2006. Methane and nitrous oxide emissions from Canadian agriculture: A review. Can. J. Anim. Sci. 86, 135–158
  • Keyzer M.A., Merbis M.D., Pavel I.F.P.W., van Westenbeeck C.F.A., 2005. Diets shifts towards meat and the effects on cereal use: Can we feed the animals in 2030? Ecol. Econ. 55, 187–2002
  • Kirchgessner M., Windisch W., Müller H., 1995. Nutritional factors for the quantification of methane production. In: W. Von Engelhardt, S. Leonhard-Marek, G. Breves, D. Giesecke (Editors). ‘Ruminant Physiology: Digestion, Metabolism, Growth and Reproduction’. Proceedings of 8th International Symposium on Ruminant Physiology. Ferdinand Enke Verlag, Stuttgart, 333–348
  • Laible G., 2009. Enhancing livestock through genetic engineering – Recent advances and future prospects. Comp. Immunol. Microbiol. Infect. 32, 123–137
  • Leip A., Weiss F., Monni S., Perez I., Fellmann T., Loudjami P., Tuiello F., Grandgirard D., Monni S., Biala K., 2010. Evaluation of the livestock sectors‘s contribution to the EU greenhouse gas emissions (GGELS) – Final Report, JRC, EU
  • Makkar H.P.S. (Editor), 2012. Biofuel co-products as livestock feed. Opportunities and challenges. FAO, Rome, pp. 533
  • Makkar H.P.S., Beever D. (Editors), 2013. Optimization of Feed Use Efficiency in Ruminant Production Systems. FAO Symposium, Bangkok (Thailand). FAO Animal Production and Health Proceedings, No. 16, Rome, pp.112
  • Martin C., Morgavi D.P., Doreau M., 2010. Methane mitigation in ruminants: From microbe to the farm scale. Animal 4, 351–365
  • Mettenleiter T.C., Boehle W.E.W., 2008. Pathogen caused diseases under changed environmental conditions (in German). Arch. Tierzucht 51, Special Issue, 49–56
  • Newman J.A., Anand H., Hal M., Hunt S., Gedalof Z., 2011. Climate Change Biology. CAB International, Wallingford (UK), and Cambridge (USA), pp. 289
  • Niemann H., Kuhla B., Flachowsky G., 2011. The perspectives for feed efficient animal production. J. Anim. Sci. 89, 4344–4363
  • NRC, 2001. Nutrient Requirements for Dairy Cattle. 7th revised Edition. National Academic Press. Washington, DC
  • Pardue S.L., 2010. Food, energy, and the environment. Poultry Sci. 89,797–802
  • Peters C.J., Wilkins J.L., Fick G.W., 2007. Testing a complete-diet model for estimation the land resource requirements of food consumption and agricultural carrying capacity: The New York State example. Renew. Agr. Food Syst. 22, 145–153
  • Pillai R.R., Kurpad A.V., 2011. Amino acid requirements: Quantitative estimates. In: J.P.F. D´Mello (Editor). Amino Acids in Human Nutrition and Health. CAB International, Wallingford (UK) and Cambridge (USA), pp. 267–290
  • Potthast T., Meisch S. (Editors), 2012. Climate Change and Sustainable Development: Ethical Perspectives on Land Use and Food Production. Wageningen Academic Publ., pp. 528
  • Powell J.M., Aarons S.R., Gourley C.J.P., 2012. Determination of feedmilk-manure relationships on grazing-based dairy farms. Animal 6, 1702–1710
  • Powell J.M., MacLoed M., Vellinga T.V., Opio C., Falcucci A., Tempio C., Steinfeld H., Gerber P., 2013. Feed-milk-manure nitrogen relationships in global dairy production systems. Livest. Sci. 152, 261–272
  • Qaim M. 2000. Potential impacts of crop biotechnology in developing countries. In: F. Heidhues, J. von Braun (Editors). Development Economics and Policy. Vol. 17; Dissertation, University Bonn. Peter Lang GmbH, Europäischer Verlag der Wissenschaften, Frankfurt/M., pp. 168
  • Rand W.M., Pellett P.L., Young V.R., 2003. Meta-analysis of nitrogen balance studies for estimating protein requirements in healthy adults. Amer. J. Clin. Nutr. 77, 109–127
  • Renault D., Wallender W.W., 2000. Nutritional water productivity and diets. Agr. Water Manage. 45, 275–296
  • Reynolds M.P., 2010. Climate change and Crop Production. CAB International, Wallingford (UK) and Cambridge (USA), pp. 292
  • Robi J.M., Wang P., Kasinathan P., Kuroiwa P., 2007. Transgenic animal production and biotechnology. Theriogenology 67, 127–133
  • SCAR (EU Commission – Standing Committee on Agricultural Research), 2008. New Challenges for Agricultural Research. Climate Change, Rural Development, Agricultural Knowledge Systems. The 2nd SCAR Foresight Exercise, Brussels, pp. 112
  • Schlink A.A., Nguyen M.-L., Viljoen G.J., 2010. Water requirements for livestock production: A global perspective. Rev. Sci. Tech. DIE 29, 603–619
  • Scholz R.W., Wellmer F.-H., 2012. Criticizing oversimplified models of peak phosphorus: Rationalizing the availability and supply of mineral resources. Economic evaluation In: Exploration (submitted)
  • Schwerin M., Bongartz B., Cramer H. et al., 2012. Climate change as a challenge for future livestock farming in Germany and Central Europe (in German). Züchtungskunde 84, 103–128
  • Serageldin I., 1999. Biotechnology and food security in the 21st century. Science 285, 387–389
  • Tamminga S., Bannink J., Dijkstra J., Zom R., 2007. Feeding strategies to reduce methane losses in cattle. Report 34, Animal Science Group, Wageningen, ISSN: 1570-8610, pp. 46
  • Taube F., Gierus M., Hermann A., Koges R., Schönbach P., 2013. Grassland and globalization – Challenges for North-West European grass and forage research. Grass Forage Sci. doi:10-1111/gfs.12043
  • Tester M., Langridge P., 2010. Breeding technologies to increase crop production in a changing world. Science 327, 818–822
  • The Royal Society, 2009. Reaping the benefits: Science and the sustainable intensification of global agriculture. RS policy document 11/09, RS 1608, ISBN: 978-0-85403-784-1
  • Thomassen M.A., van Calker K.J., Smits M.C.J., Iepema G.L., de Boer I.J.M., 2008. Life cycle assessment of conventional and organic milk production in the Netherlands. Agr. Syst. 96, 95–107
  • Tillie P., Dillen K., Rodriguez-Cerezo E., 2013. The pipeline of genetically modified crops for improved animal feed: Challenges for commercial use. In: G. Flachowsky (Editor). Animal Nutrition with Transgenic Plants. CABI (in press)
  • Verstraete F., 2013. Risk management of undesirable substances in feed following updated risk assessments. Toxicol. Appl. Pharmacol. 270, 230–247
  • Wally O., Punja Z.K., 2010. Genetic engineering for increasing fungal and bacterial disease resistance in crop plants. Genet. Modified Crops 1, 199–206
  • Waterlow J.C., 1999. The mysteries of nitrogen balance. Nutr. Res. Rev. 12, 25–54
  • Wennemer H., Flachowsky G., Hoffmann V., 2006. Protein, Population, Politics – How Protein can be Supplied Sustainable in the 21st Century. Plexus Verlag, Mittenberg and Frankfurt/M, pp. 160
  • Whitford R., Gilbert M., Langridge P., 2010. Biotechnology in agriculture. In: M.P. Reynolds (Editor). Climate Change and Crop Production. CABI, Wallingford/Cambridge, pp. 219–244
  • WHO, FAO and UNU, 2007. Protein and amino acid requirements in human nutrition. Report of a Joint WHO/FAO/UNU Expert Consultation. World Health Organization Technical Report Series, 935. 1–265
  • Windisch W., Fahn C., Brugger D., Deml D., Buffler M., 2013. Strategies for sustainable animal nutrition (in German). Züchtungskunde 85, 40–53
  • Young V.R., Bier D.M., Pellett P.L., 1989. A theoretical basis for increasing current estimates of the amino acid requirements in adult man, with experimental support. Amer. J. Clin. Nutr. 50, 80–92
  • Zehetmeier M., Bandracco J., Hoffmann H., Heißenhuber A., 2011. Does increasing milk yield per cow reduce greenhouse gas emission? A system approach. Animal 6, 154–166
  • Zhu X.Q., Van Ierland E.C., 2004. Protein chains and environmental pressures: A comparison of pork and novel protein foods. Environm. Sci. 1, 254–276

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-0f24624e-1049-4050-abf2-d10f861ad427
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.