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Summary Phytoplankton communities have long been used as water quality indicators within 
environmental policies. This has fostered the development of national and international phy- 
toplankton monitoring programs, but these networks are subject to sources of uncertainty due 
to laboratory issues. Nevertheless, studies regarding the interference associated with these 
aspects are not well-documented. Hence, a long time series (2003—2015) from the Basque 
continental shelf (southeastern Bay of Biscay) was analyzed to evaluate the uncertainty given 
by laboratory strategies when studying phytoplankton variability. Variability in phytoplankton 
communities was explained not only by environmental conditions but also by changes in fix- 
atives (glutaraldehyde and acidic Lugol’s solution) and laboratory staff. Based on Bray-Curtis 
distances, phytoplankton assemblages were found to be significantly dissimilar according to the 
effect of changes in the specialist handling the sample and the employed fixative. The pair-wise 
permutational multivariate analysis of variance (PERMANOVA) showed significant differences 
between the two fixatives utilized and also between the three taxonomists involved. Thus, 
laboratory-related effects should be considered in the study of phytoplankton time series. 
© 2020 Institute of Oceanology of the Polish Academy of Sciences. Production and host- 
ing by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 
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1. Introduction 

Phytoplankton has long been studied as a key environ-
mental quality indicator within several international poli-
cies including European directives, such as the Water
Framework Directive (WFD, 2000/60/EC) and the Marine
Strategy Framework Directive (MSFD, 2008/56/EC) ( Borja
et al., 2008 ; Garmendia et al., 2013 ). These policies re-
quire large monitoring networks in order to assess water
quality and involve indicators that reflect different phy-
toplankton attributes, such as composition ( Devlin et al.,
2009 ; Domingues et al., 2008 ). Additionally, bivalve mollusk
culture areas worldwide require phytoplankton monitoring
programs in order to manage potential toxicity ( Bricelj and
Shumway, 1998 ). 

Phytoplankton assemblages depend on species suc-
cession, which is influenced in turn by environmental
changes ( Huisman et al ., 1999 ). However, there are also
several sources of variation associated with the analysis
of phytoplankton communities ( Dromph et al., 2013 ). The
microscope-based method following the Utermöhl tech-
nique is the standardized method for phytoplankton identi-
fication and counting within the European Union (EN 15204
2006). This method requires highly specialized taxonomists,
yet most studies show a bias due to variation in the level of
expertise exercised by each taxonomist ( Culverhouse et al.,
2003 ; Dromph et al., 2013 ; Jakobsen et al., 2015 ; Peperzak,
2010 ; Straile et al., 2013 ; Wiltshire and Dürselen, 2004 ).
An exception was found for diatom indices for which some
studies have concluded that, as long as a harmonized
methodology is followed, the error associated with tax-
onomist variation has little effect ( Kahlert et al., 2009 ,
2012 ). The preservation of plankton samples can also intro-
duce artifacts on species abundance, as well as cell volume
estimates. Traditional fixatives, such as Lugol’s iodine and
glutaraldehyde, have been reported to produce shrinkage,
swelling, or even breakage of phytoplankton cells, which
can bias estimates of abundance and biomass ( Booth, 1987 ;
Menden-Deuer et al., 2001 ; Verity et al., 1992 ; Yang et al.,
2016 ). 

In order to develop more accurate phytoplankton count-
ing protocols and be able to interpret their results, it is
essential to estimate the variability given by each source
of uncertainty. To the best of our knowledge, such stud-
ies are scarce. Some of the existing literature focused on
specific issues, such as the need of a harmonized method-
ology ( Kahlert et al., 2009 , 2012 , 2016 ), or specifically on a
concrete taxonomic group ( Heino and Soininen, 2007 ), or on
the influence of taxonomic resolution ( Carneiro et al., 2010 ,
2013 ). 

In this context, the aim of the present study is to inves-
tigate the detection of inhomogeneities in phytoplankton
time series and assess how these differences can be caused
by factors other than the environment. This work does not
attempt to be a methodology or inter-laboratory compari-
son, but it shows the importance of a previous data analysis
when studying long-term trends or patterns in phytoplank-
ton composition and abundance. Phytoplankton time-series
can contain relevant ecological information (e.g., to ad-
dress the effect of climate change) ( Martinez et al., 2009 ),
but can also be subject to methodological interferences
( Kahler et al., 2012 ; Menden-Deuer et al., 2001 ). Hence,
a complete overview of the potential interference in phyto-
plankton inter-annual variability given by taxonomist expe-
rience and fixative type is addressed. We use a long time
series ( > 10 years), which involves both coastal and off-
shore areas and takes into account the whole nano- and mi-
croplankton community. 

2. Material and methods 

2.1. Study area, sampling and laboratory strategies

This study draws on data from the Littoral Water Qual-
ity Monitoring and Control Network of the Basque Water
Agency, which has been used for the implementation of the
Water Framework Directive in the Northeast Atlantic ecore-
gion ( Borja et al., 2004 , 2016 ; Revilla et al., 2009 ). The
dataset consists of 16 stations along the Basque coast and
three offshore stations in the southeastern Bay of Biscay
( Figure 1 ). The climate in the study area is temperate and
oceanic with moderate winters and warm summers. Coastal
water bodies are euhaline and exposed. A detailed descrip-
tion of hydrographical conditions is given in Valencia et al.
(2004) . 

The analyzed time series was collected over 13 years
(from 2003 to 2015), except for two offshore stations with
seven-year datasets (RF20 and RF30, from 2009 to 2015).
Although phytoplankton samples have been obtained quar-
terly since 2007, only the spring and summer data were ana-
lyzed (i.e., two surveys per year) as these were the seasons
sampled during the complete time series. 

The following environmental variables were used in the
analysis: temperature, salinity, Secchi depth, suspended
solids, ammonium, nitrate, phosphate and silicate. In the
field, the temperature and salinity were recorded in surface
waters using a conductivity, temperature and depth multi-
parametric probe (CTD) (Seabird25), the Secchi disk depth
was measured as an estimator of the water transparency,
and surface water samples were taken for subsequent labo-
ratory analyses. The concentration of suspended solids was
estimated following the procedure described in Clesceri
et al. (1989) after the filtration of water through Whatman
GF/C filters. Inorganic nutrients (ammonium, nitrate, sil-
icate, phosphate) were measured using a continuous-flow
autoanalyzer (Bran + Luebbe Autoanalyzer 3, Norderstedt,
Germany) according to colorimetric methods described in
Grasshoff et al. (1983) . When nutrient concentrations were
below the quantification limit (1.6 μmol L −1 for ammonium,
nitrate or silicate; 0.16 μmol L −1 for phosphate), the value
used for statistical analyses was equal to one half of that
limit. 

For phytoplankton, surface water was preserved im-
mediately and maintained in 125 mL borosilicate bottles
under dark and cool conditions (4 °C) until analysis. Glu-
taraldehyde (0.1% v/v) was used for preservation until
2011 and acidic Lugol ś solution (0.4% v/v) from then on.
Taxonomic identification and cell counting were performed
on subsamples of 50 mL (occasionally, particle density was
too high and 10 mL samples were used instead), following
the Utermöhl method ( Edler and Elbrächter, 2010 ; Hasle,
1978 ; Utermöhl, 1958 ) under a Nikon diaphot TMD inverted
microscope. Depending on the organism size, 100x or 400x
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Figure 1 Map of the study area and sampling stations. Squares correspond to nearshore sampling sites and circles to offshore 
sampling sites. 

Table 1 Fixatives and taxonomists associated with the analyses in the time series. In both the spring and the summer data 
sets, the number of samples is shown, together with the arithmetic mean ± standard deviation for the total number of 
taxa, as well as for the number of taxa identified at species or genus levels and at higher level. The rare taxa are excluded 
(i.e., those occurring in less than 1% of the samples). In addition, the samples from stations RF20 and RF30 are not included, 
as these stations were monitored only from 2009 onwards. 

Fixative Taxonomist Year Season Samples Total taxa Species or genus Higher ranks 

Glutaraldehyde #1 2003, 2008, 2009 Spring 51 24.4 ± 7.1 20.2 ± 7.5 4.2 ± 1.1 
Summer 51 25.2 ± 8.3 20.9 ± 7.9 4.3 ± 1.0 

#2 2005, 2006, 2007, 
2010, 2011 

Spring 83 21.4 ± 5.8 16.0 ± 5.6 5.5 ± 1.2 
Summer 82 21.1 ± 5.0 15.4 ± 5.0 5.8 ± 1.0 

#3 2004 Spring 16 12.2 ± 3.4 11.9 ± 3.5 0.3 ± 0.5 
Summer 16 7.0 ± 5.2 6.8 ± 5.0 0.3 ± 0.4 

Acidic Lugol #1 2012, 2013, 2014, 
2015 

Spring 68 36.3 ± 7.6 31.8 ± 7.2 4.6 ± 1.3 
Summer 68 36.4 ± 11.5 31.6 ± 11.3 4.8 ± 0.9 

m
c
S
a
n
o  

i
h
a
f
i
t  

r
t
I
m  

r

2

2
E
o
m

s
t  

r
f
o
s
p  

a
p  

a  

 

p  

s  

e  

s  

1
v  

f
t  

P  

h  

e  

P  

t  

P

agnification was used; the detection limit of microscope 
ounts for microplanktonic organisms was 20 cells L −1 . 
mall nanophytoplankton cells that could not be assigned to 
ny taxonomic group were clumped together into a group 
amed “unidentified forms < 10 μm”. Three different tax- 
nomists belonging to the same laboratory took part in the
dentification and counting of phytoplankton. Taxonomist #1 
andled samples corresponding to years 2003, 2008, 2009 
nd from 2012 to 2015. Taxonomist #2 handled samples 
rom 2005, 2006, 2007, 2010 and 2011, and Taxonomist #3 
dentified and counted samples from 2004. No changes in 
he staff took place within the year of analysis. The expe-
ience of the taxonomists increased from the beginning of 
he time series, reaching more specific taxonomic levels. 
n most of the identifications, and particularly in those 
ade by Taxonomist #3, the levels of species or genus were
eached ( Table 1 ). 

.2. Data analysis 

.2.1. Environmental variables 
nvironmental data were transformed and standardized in 
rder to achieve the assumptions of normality and ho- 
oscedasticity. All analyses were performed separately for 
pring and summer. Each individual variable was subjected 
o one-way analysis of variance (ANOVA) and a multiple
ange test (95% least significant difference, LSD) to check 
or significant differences among years. Additionally, based 
n Euclidean distance matrices, nonmetric multidimen- 
ional scaling (MDS) ordination and cluster analyses were 
erformed to study the variability of all environmental vari-
bles together. Similarity profile analysis (SIMPROF) at al- 
ha = 0.05 was included to test for significant differences
t each cluster dendrogram node ( Clarke and Gorley, 2006 ).
The MDS analyses were carried out with the (i) 19 sam-

ling sites and (ii) average values of each variable per sea-
on and year (i.e., average between the sampling stations),
xcluding stations RF20 and RF30 because they were only
ampled from 2009 on. Additionally, for the analysis of the
9 sampling sites, permutational multivariate analysis of 
ariance (PERMANOVA) was used to test for significant dif-
erences between years. A PERMANOVA with 9999 permuta- 
ions was carried out with “year” as a fixed factor. A second
ERMANOVA, applying the same settings, was used as a post-
oc test for pair-wise comparisons between the 13 differ-
nt years. Statgraphics Centurion XVI was used for ANOVA,
RIMER 6 statistical software (Primer-E Ltd., UK) for clus-
er analyses, and MDS and RStudio ( R Core Team, 2015 ) for
ERMANOVA. 
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2.2.2. Phytoplankton community 
Prior to mathematical analysis, the phytoplankton species
list was standardized according to AlgaeBase ( Guiry and
Guiry, 2015 ). Rare taxa, defined here as those occurring in
less than 1% of the samples, were excluded in the analyses
to reduce noise in the data. A total of 129 of the 336 taxa
were left out of the analysis. 

Phytoplankton abundance data (cell L −1 ) were log ( x + 1)
transformed. Separate analyses were performed for spring
and summer. MDS and cluster analyses were performed
equally to the environmental data but based on zero-
adjusted Bray-Curtis matrices ( Clarke et al., 2006 ). These
matrices were used to study the inter-annual variability
of community assemblages. MDS is a powerful ordination
method for ecological community analysis that allows a
large presence of zero values and does not assume a linear
relationship between variables ( McCune et al., 2002 ).
Similar to the environmental data, analyses were carried
out with the (i) 19 sampling sites and (ii) average cell
density values per season and year. At the level of virtual
sampling units, analyses were performed based on densities
of (i) the lowest taxonomic level available and (ii) major
taxonomic groups (i.e., autotrophic coccoids, chlorophytes,
Mesodinium spp., cryptophytes, diatoms, dinoflagellates,
euglenophytes, haptophytes, ochrophytes, and unidentified
forms). Moreover, a PERMANOVA (9999 permutations) was
performed to test for significant differences associated with
“fixative” as a fixed factor. The dataset was then split into
two subsets based on the two fixatives. The first subset,
which corresponded to glutaraldehyde and included data
for the three taxonomists (i.e. , period 2003—2011), was
subjected to a second PERMANOVA (9999 permutations) with
“taxonomist” as a fixed factor. An additional PERMANOVA
was used as a post-hoc test for pair-wise comparisons
between the three different taxonomists. The second
subset (i.e., period 2012—2015), where the acidic Lugol ś
solution was used, could not be subjected to a second
PERMANOVA since it only included information for a single
taxonomist. 

Finally, partial Canonical Correspondence Analyses
(pCCA) ( Borcard et al., 1992 ; Legendre and Legendre, 1998 )
were applied to test if the variability in the abundance of
the phytoplankton taxa could be associated with changes in
the environmental conditions and/or in the laboratory staff.
Two pCCA were carried out for the period 2003—2011: one
with spring data and another one with summer data. The
pCCA were carried out with CANOCO for Windows 4.5 ( Braak
and Smilauer, 2002 ). The log-transformed phytoplankton
abundance at each sampling site was used as the dependent
data set. The independent data consisted of two sets of
explanatory variables: (i) the environmental variables (tem-
perature, salinity, Secchi depth, suspended solids, ammo-
nium, nitrate, phosphate, and silicate), and (ii) the factor
‘taxonomist’, using dummy coding ( Legendre and Legen-
dre, 1998 ). Previously, the environmental variables were
Box-Cox transformed and normalized. The pCCA parted the
explained variance of the phytoplankton abundance into the
following components: (i) the variance uniquely described
by the environment (but not by the taxonomist effect),
(ii) the variance uniquely described by the taxonomist
effect (but not by the environment), (iii) the variance
jointly described by the environment and the taxonomist
effect, and (iv) the unexplained variance. The significance
of the pCCA models was tested with the Monte-Carlo
test. 

3. Results 

3.1. Environmental variables 

All of the investigated environmental variables showed
statistically significant differences in mean values among
some years, both in spring and summer (ANOVA test, al-
pha = 0.05). Results for the individual environmental vari-
ables are summarized in Figure 2 , which shows the means
and standard deviations, and Table 1 of the Supplementary
Electronic Material, which includes results of the multiple
range tests. 

Secchi disk depth showed seven homogeneous groups
(i.e. , statistically significant different groups) both in spring
and summer. The groups with the lowest values were ob-
tained from data collected in spring 2003, 2007 and 2011,
and summer 2003, 2005 and 2010. The highest values oc-
curred in 2012 and 2015 in spring, and 2004, 2013 and 2015
in summer. Mean Secchi depths ranged from 5.1 to 13.7
m. Mean temperature showed its minimum in spring 2010
(14.6 °C) and its maximum in summer 2003 (23.4 °C). Apart
from that, spring 2011 was relatively warm (18.1 °C) and
summer 2015 was relatively cold (20.0 °C). Based on tem-
perature, each of these years formed a separate homoge-
neous group, statistically different from the others. Salinity
mean values ranged from 34.1 to 35.7. In spring, minimum
mean values were given by the homogeneous group formed
by the years 2003, 2004, 2005, 2013 and 2014, whereas the
maximum was represented by the group from years 2008,
2010 and 2011. In summer, maximum values occurred during
2012. Suspended solids mean concentrations ranged from
1.2 to 9.1 mg L −1 with a general increasing trend from the
beginning towards the end of the time series, both in spring
and summer. 

With regard to nutrients, mean ammonium values were
significantly lower during 2003. In spring, the years 2007 and
2013 formed the group with the highest ammonium concen-
trations, whereas in summer, 2006 and 2013 were the years
with the highest values. Mean nitrate concentrations ranged
from 0.8 to 4.3 μmol L −1 . Compared with spring, where six
significant groups of years were found, mean summer val-
ues showed lower variability, as shown by the four groups of
years. Phosphate concentrations presented mean values be-
tween 0.05 and 0.37 μmol L −1 . Maxima were found in spring
during 2007—2008. 2003 and 2005 presented especially low
concentrations in summer. Silicate showed five significantly
different homogeneous groups of years. In spring, mean con-
centrations ranged from 1.0 to 5.3 μmol L −1 and in summer
from 1.0 to 4.7 μmol L −1 . 

MDS biplots represent the samples as points in low-
dimensional space such that the larger the distance be-
tween two points in the plot, the more dissimilar they are
with regard to the environmental variables and vice versa.
Hence, when analyzing the variability of all environmen-
tal variables together, some years appeared substantially
different from the others in the MDS (e.g., spring 2003
and summer 2003, 2005, 2013 and 2014) ( Figure 3 ). The
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Figure 2 Mean plots for the environmental variables in each year during the period 2003—2015, with spring and summer shown 
in the left and right columns, respectively. Vertical error bars represent the standard deviation. 
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air-wise PERMANOVA revealed significant differences be- 
ween all years, both in spring and summer (Table 2 of the
upplementary Electronic Material). 
In the MDS analysis of environmental variables using 

verage values per season and year, the chronological 
rajectory showed great dissimilarities between some con- 
ecutive years, such as spring 2006—2007 or summer 2003—
004, 2012—2013 and 2014—2015 ( Figure 4 ). In contrast,
ome years appeared close to each other indicating similar
ean environmental conditions. However, cluster analyses 
SIMPROF test, alpha = 0.05) for average values of envi-
onmental data did not find any significant group, either in
pring or summer (Figure 1 of the Supplementary Electronic
aterial). 
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Figure 2 Continued. 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2. Phytoplankton assemblages 

As shown in Table 1 , the samples fixed with glutaralde-
hyde differed little in the number of taxa if analyzed by
Taxonomist #1 or by Taxonomist #2. The average richness
of these samples (21—25 different taxa, approximately)
was very similar between spring and summer. However, the
glutaraldehyde-fixed samples analyzed by Taxonomist #3
resulted in a much smaller number of taxa (7—12), espe-
cially in summer. The highest number of taxa corresponded
to the samples fixed with Lugol and analyzed by Taxonomist
#1 after increased experience (36, in average, in spring as
well as in summer). 

As for the cell density, in general, it was higher in spring
compared to summer (Figure 2 of the Supplementary Elec-
tronic Material). However, some exceptions can be noticed
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Figure 3 Multidimensional scaling (MDS) of the transformed 
environmental data in spring and summer using Euclidean dis- 
tances for the period 2003—2015. 

Figure 4 Multidimensional scaling (MDS) of the transformed 
environmental data (mean values of 17 sampling sites) using 
Euclidean distances. Cluster analyses did not find any significant 
group of years (SIMPROF test, alpha = 0.05). 

Figure 5 Multidimensional scaling (MDS) for phytoplankton 
abundance (log ( x + 1) transformed data using zero-adjusted 
Bray-Curtis distances) for the period 2003—2015. Data are 
shown separately for spring (a) and summer (b). Different sym- 
bols represent the different fixatives employed. 
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or dinoflagellates and for other non-diatom taxa. Although 
he dinoflagellates usually contributed very little to the to-
al cell abundance, their almost zero presence in several
amples analyzed by Taxonomist #3 is remarkable (Figure 2b
f the Supplementary Electronic Material). The other non- 
iatom cells, all together, were the most abundant in the
ata sets associated with Taxonomists #1 and #2, but not
n many of the summer samples analyzed by Taxonomist #3
Figure 2c of the Supplementary Electronic Material). In the
roups of samples analyzed by Taxonomist #1, the cell abun-
ance (estimated as geometric mean) was very similar be-
ween the two types of fixatives (Figure 2 of the Supplemen-
ary Electronic Material). 
When the complete dataset (19 sites) was analyzed, 

he MDS showed two separate groups with regard to inter-
nnual variability of community composition: one referring 
o the year 2004 and the other referring to the remaining
ears (Figure 3 of the Supplementary Electronic Material). 
eparate MDS were conducted for spring and summer con-
idering, firstly, the influence of the fixative ( Figure 5 ). In
he MDS biplots, a separation based on the type of fixa-
ive used can be observed in both seasons. Moreover, the
ERMANOVA analysis indicated that phytoplankton variabil- 
ty was explained by the utilized fixative ( p = 0.0001). 

The influence of the taxonomist was then studied in the
ubset where one unique fixative was employed (i.e., glu-
araldehyde during the period 2003—2011). The MDS biplots 
howed two main groups: one associated with Taxonomist #1
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Figure 6 Multidimensional scaling (MDS) for phytoplankton 
abundance (log ( x + 1) transformed data using zero-adjusted 
Bray-Curtis distances) for the period 2003—2011. Data are 
shown separately for spring (a) and summer (b). Different sym- 
bols represent different taxonomists handling the samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and Taxonomist #2 and the other associated with Taxonomist
#3 ( Figure 6 ). The pair-wise PERMANOVA for this subset re-
vealed significant differences between the three different
taxonomists handling the samples (Table 3 of the Supple-
mentary Electronic Material). Similar results were obtained
for spring and summer. 

Inter-annual variability was also studied based on aver-
age values per season and year. Here, the MDS and cluster
analyses for phytoplankton assemblages showed several sig-
nificant groups according to changes both in the utilized fix-
ative and taxonomist handling the samples ( Figure 7 ). 

At the lowest taxonomic level, 2004 (associated with
Taxonomist #3) was the most different ( Figure 7 a, 7 b) .
In spring, significant groups formed between years associ-
ated to the same fixative, such as the period 2012—2015
( Figure 7 a). In summer, years were grouped not only accord-
ing to the fixative, but also to the taxonomist, as shown by
the group formed by the years identified by Taxonomist #2.
The similarity of the significant groups of years was approx-
imately 60%. 

At the level of major taxonomic groups, the year 2004
also showed different phytoplankton assemblages com-
pared to other years. At this taxonomic level, spring in all
years appeared significantly grouped in accordance to the
utilized fixative, except for 2004 that was also associated
with a change in the taxonomist ( Figure 7 c). In summer,
except for 2008, years were grouped in agreement with the
specialist doing the identification, even if the employed
fixative was different ( Figure 7 d). The observed groups of
years presented a similarity of around 90%. 

Not only were differences among taxonomists observed,
but also among different years with the same taxonomist.
However, when looking at the years identified by Taxonomist
#1 and Taxonomist #2 separately, the dissimilarities in com-
munity assemblages between years become smaller, partic-
ularly for Taxonomist #2. Cluster analyses of phytoplankton
data are described in further detail in the Electronic Supple-
mentary Material (Figure 4 of the Supplementary Electronic
Material). 

By using the pCCA ( Table 2 ), the variability in the species
densities explained by the sum of the environmental con-
ditions and the taxonomist effect was 29.1% (spring) and
25.9% (summer). The percentage of variability uniquely ex-
plained by the environment was 15.8% and 12.8%, whereas
that of the taxonomist effect was 10.8% and 9.6% (for spring
and summer, respectively). The part of the variation that
was explained jointly by the environment and the tax-
onomist effect was 2.5% (spring) and 3.5% (summer). Hence,
the two sets of independent variables were not very redun-
dant in explaining the spatio-temporal variability of species
densities (i.e., each set of independent data was largely ex-
plaining different aspects of the observed variability in the
phytoplankton). 

4. Discussion 

Yearly variation in phytoplankton communities can be ex-
plained not only by changes in nutrient concentrations and
climatic factors ( Cloern and Jassby, 2010 ; Cloern et al.,
2013 ), but also by the employed fixative (e.g., Zarauz
and Irigoien, 2008 ) and uncertainty introduced by the tax-
onomists even if the methodology was similar ( Peperzak,
2010 ). This study presents evidence of the effect of these
two laboratory-associated factors. 

Different fixatives have been found to produce several
effects on phytoplankton cells, such as diameter shrinkage,
size changes and reduction in the abundance of detected
cells ( Leakey et al., 1994 ; Mukherjee et al., 2014 ; Zarauz
and Irigoien, 2008 ). Thus, the identification and counting
of cells can be biased and lead to distorted results. The
results presented here show evidence of the bias intro-
duced by changes in the utilized fixative, as in the analy-
sis of phytoplankton communities from 19 sampling sites a
clear differentiation was found from the year 2012 onwards
(i.e., when the change from glutaraldehyde to Lugol’s solu-
tions occurred). 

Additionally, evidence of interference arising from
changes in the taxonomist performing the identification
was identified. This could be explained in part by the risk
of misidentification of small and cryptic species that is
likely when using traditional techniques, such as that of
Uthermöhl, which require a high level of expertise of the
taxonomist ( Mouillot et al., 2006 ). The clearest finding was
observed for phytoplankton assemblages from 2004, which
appeared notably differentiated from the others in the MDS
plots. These results could not be linked to the previously
mentioned effect of the fixative because the same fixative
was employed in other years and such differences were not
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Figure 7 Multidimensional scaling (MDS) of the annual phytoplankton community assemblages (log ( x + 1) transformed data using 
zero-adjusted Bray-Curtis distances). Average values per year and season (i.e., mean values of 17 sampling sites) are shown for 
spring (a, c) and summer (b, d). Panels a and b show data at the lowest taxonomic level available, and panels c and d at the 
major group level. Symbols represent different fixatives, colors show different taxonomists, and contour lines indicate significantly 
different groups (SIMPROF test, alpha = 0.05). See Figure 4 of the Supplementary Electronic Material for cluster analyses. 

Table 2 Results of two partial Canonical Correspondence Analyses (pCCA) carried out within the period 2003—2011; one for 
spring data and other one for summer data. 

Spring Summer 

explained inertia (%) F-Ratio p-value explained inertia (%) F-Ratio p-value 

Environmental data (1) 18.3 4.12 < 0.01 16.4 3.57 < 0.01 
Taxonomist (2) 13.3 11.7 < 0.01 13.1 11.43 < 0.01 
Environmental data — [taxonomist] (3) 15.8 4.05 < 0.01 12.8 3.12 < 0.01 
Taxonomist — [environmental data] (4) 10.8 11.02 < 0.01 9.6 9.27 < 0.01 
Environmental + taxonomist (shared variance) 2.5 3.5 
Total (5) 29.1 5.95 < 0.01 25.9 5.03 < 0.01 

(1) CCA carried out with environmental data as independent data, (2) CCA carried out with taxonomist data as independent data, (3) 
CCA carried out with environmental data as independent data and taxonomist data as covariable; (4) CCA carried out with taxonomist 
data as independent data and environmental data as covariable, (5) CCA carried out with taxonomist data and environmental data as 
independent data. Note: the results of (1) and (2) are not part of the pCCA. 
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bserved. In addition, the environmental variables in 2004 
id not present extreme values that could explain such 
ifferentiation in the phytoplankton assemblages. Thus, 
he observed phytoplankton assemblages for 2004 were 
uspected to be artifacts of the change in the taxonomist
e.g., Dromph et al., 2013 ; Peperzak, 2010 ). 
However, it must be noted that not only extreme values 

an shape the composition of phytoplankton communities 
e.g., Remy et al., 2017 ). As shown in previous studies ( Bode
t al., 2015 ; Devlin et al., 2019 ; Hernández et al., 2015 ),
hytoplankton variability is also influenced by gradual 
hanges of several variables, such as water temperature, 
urbidity, salinity or nutrient concentration, at the long- 
erm. In the present study, environmental conditions in 
urface waters were studied to check if they could explain
he inter-annual variability of phytoplankton community. 
n general, dissimilarities found in the environmental con- 
itions did not explain the main dissimilarities observed in
he phytoplankton communities. As an example, apart from 

he above explanation regarding 2004, 2003 was found to be
ne of the most different years in terms of environmental
ariables, both in spring and summer. Spring 2003 was 
haracterized by minimum values in water transparency 
Secchi depth) and salinity, and relatively high values in
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nitrate and silicate. Summer 2003 presented the maxi-
mum water temperature and the minimum in all nutrients
(ammonium, nitrate, nitrite, phosphate and silicate). How-
ever, these findings were not consistently accompanied by
great dissimilarity in phytoplankton assemblages between
2003 and other years. In addition, along the chronological
trajectory, the largest dissimilarities in environmental
conditions between years, with respect to average values
per season and year, did not reflect such changes in com-
munity assemblages for the same years. In fact, one of the
largest dissimilarities in phytoplankton communities be-
tween consecutive years, apart from 2004, was associated
with changes in the both the fixative and the taxonomist
(i.e., 2011 to 2012). Therefore, these laboratory-induced
artifacts are confirmed as significant factors in introducing
uncertainty to the study of phytoplankton communities. 

It could be possible that the error in the taxonomic deter-
minations and counts derived from the taxonomist change
caused (at least partially) the lack of correlation of the en-
vironmental variables with the structure of the communi-
ties observed in the MDS results. Muñiz et al. (2018) found
that, for this same studied area, the spatio-temporal vari-
ability in the phytoplankton densities was significantly ex-
plained by environmental data in the period 2012—2015,
in which the taxonomist handling the samples and the fix-
ative used were the same the same. Considering a longer
period (2003—2011) with the same fixative, but including
three different taxonomists, the pCCA results show that the
variability in the phytoplankton densities was also signifi-
cantly explained by environmental data, once removed the
taxonomist effect ( Table 2 ). Nevertheless, it is important
to remark that the percentage of the variability explained
by the environmental variables in the 2003—2011 period in-
creases considerably when the taxonomist effect is taken
into account. This implies that, at least in our case study, it
is relevant to take into account appropriate measures when
phytoplankton time series involving different taxonomists
are studied. 

Although data obtained by different taxonomists in
the same samples were not compared in this study, Tax-
onomist #1 and Taxonomist #2 took part in a previous study
that assessed the variability in total cell counts within a
similar set of samples analyzed by different taxonomists
( Dromph et al., 2013 ). That study involved several local-
ities, including the Basque coast, and concluded that in
all cases, important differences were observed due to the
taxonomists’ effect. When data from different monitoring
programs are integrated, inter-laboratory biases are added
to intra-laboratory ones. Intercomparison exercises among
laboratories (for example, the International Phytoplankton
Intercomparison, https://www.iphyi.org ) arise as a good
strategy to reduce uncertainty related to taxonomists and
other analytical protocols. 

It is also interesting to assess this effect not only at the
lowest taxonomic level available, but also at other taxo-
nomic levels. At the level of major taxonomic groups, the
bias due to the experience of the taxonomist was found
to be much lower compared with that of species level, as
shown by the similarity percentages of significant groups
( Figure 3 c, 3 d). Consequently, for studies or monitoring net-
works in which a high taxonomic detail is not required, it
would be desirable to work at a higher taxonomic level in
order to minimize identification errors. However, interpre-
tation of this finding should be taken with care as Straile
et al. (2015) found that, at least in lakes, taxonomic aggre-
gation does not always imply more robust results. 

It should be noted that studies focused on inhomogene-
ity detection in phytoplankton time series are relatively
scarce. This is not the case for climate datasets, for which
several methodologies have been developed for the detec-
tion of inhomogeneities (e.g., Buishand, 1982 ; Costa et al.,
2008 ; Ribeiro et al., 2016 ). Thus, it is necessary to test
the usefulness of the methodology employed in the present
study (i.e., detection of changes in biological assemblages
by means of multivariate analyses, such as PERMANOVA and
SIMPROF tests) to other long-term phytoplankton datasets. 

5. Conclusions 

Evidence of the uncertainty due to laboratory issues (i.e. ,
changes in fixatives, experience or changes in the tax-
onomist) is demonstrated and should be considered when
studying long-term phytoplankton time series. Interference
introduced by changes in the taxonomists was lower at the
level of major taxonomic groups and thus, we suggest that
community studies be conducted at higher taxonomic lev-
els when possible. Continuous learning should be combined
with detailed protocols and strict standards, and further re-
search should be done regarding the detection of inhomo-
geneities in phytoplankton time series. 
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