PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 545 |

Tytuł artykułu

Effect of moderate water deficit on calcium level in Sium latifolium L. leaf cells

Autorzy

Warianty tytułu

PL
Wpływ umiarkowanego deficytu wody na poziom wapnia w liściach Sium latifolium L.

Języki publikacji

EN

Abstrakty

EN
The distribution and content of calcium ions in organelles, cytoplasm and celi walls of leaf mesophyll and epidermis of Sium latifolium air-water and terrestrial plants at various developmental stage was investigated. It was established that the relative content of Ca2+ in cells changed in relation to growth stage and environmental growth conditions. Moderate water deficit led to the increase of calcium content in chloroplasts and nucleus of palisade mesophyll, and in cell walls of adaxial epidermis of plants that were collected at flowering phase. At fruitage stage, water deficit led to the decrease of Ca2+ in chloroplasts and in cytoplasm of mesophyll cells and in cell walls of epidermis. The obtained results show that these data can be used as a basis for future studies on the mechanisms of calcium redistribution and the role of ion channels in plant cells under water deficit.
PL
Celem badań była analiza zawartości i rozmieszczenia jonów wapnia w organellach, cytoplazmie i ścianach komórkowych mezofilu i epidermy liści dwóch ekoform Sium latifolium (powietrzno-wodna i lądowa) w różnych fazach rozwojowych. Stwierdzono, iż względna zawartość Ca2+ ulega zmianom w zależności od fazy rozwojowej i warunków środowiskowych, w jakich rosną rośliny. Umiarkowany deficyt wody prowadzi do wzrostu zawartości wapnia w chloroplastach i jądrach komórek miękiszu palisadowego i górnej epidermy liści roślin w fazie kwitnienia. Równocześnie u roślin w fazie owocowania, deficyt wody prowadzi do spadku zawartości Ca2+ w chloroplastach i cytoplazmie mezofilu i ścianach komórkowych epidermy liści. Uzyskane rezultaty mogą stanowić podstawę do dalszych badań nad mechanizmem redystrybucji jonów wapnia i roli kanałów jonowych u roślin rosnących w warunkach deficytu wody.

Wydawca

-

Rocznik

Tom

545

Opis fizyczny

p.179-189,fig.,ref.

Twórcy

autor
  • Department of Cell Biology and Anatomy, Institute of Botany, Tereschenkivska St.2, 01004 Kiev, Ukraine

Bibliografia

  • Breskin J., Soriano E., Moses K., Tłusty T. 1997. Supplementary material for „Percolation in living neural networks". Page 1-8. http://ftp.aip.org/epaps/phys_ rev_lett/E-PRLTAO-97-005644/Percolation-Neurons_SUPPLEMENT.doc
  • Bush D.S. 1995. Calcium regulation in plant cells and its role in signaling. Annu. Rev. Plant Physiol. Plant Mol. Biology 46: 95-122.
  • Charles S.A., Halliwell B. 1980. Action of calcium ions on Spinacia oleracea chloroplast fructose biphosphatase and other enzymes of Calvin cycle. Biochem. J. 188: 775-779.
  • Coleman A.W., Maguire M.J., Colema J.R. 1981. Mythramycin- and 4,6-diamidino-2-phenylindole (DAPI)-DNA staining for fluorescence microspectrophotometric measurement of DNA in nuclei, plastids, and virus particles J. Histochem. and Cytochem. 29: 959-968.
  • Demming B., Gimmler H. 1979. Effect of divalent cations on cation fluex across the chloroplast envelope and on photosynthesis of intact chloroplasts. Z. Naturforsch. 34c: 233-241.
  • Dilley R.A., Cheng G. 1989. Chloroplast thylakoid membrane-bound Ca2+ acts in a gating mechanism to regulate energy-coupled proton fluxes. Ann. NY Acad. Sci. 574: 246-267.
  • Ettinberg W.F., Clear A.M., Fanning K.J., Peck M.L. 1999. Identification of Ca2+/H+ antiport in the plant chloroplast thylakoid membrane. Plant Physiol. 119: 1379-1386.
  • Gavrilenko V.F., Ladigina M.E., Khandobina L.M. 1975. Bolshoy Praktikum Po Fiziologia Rasteniy. Fotosinthesis. Dikhanie. Rubin B.A. (Ed.). Vishaz Skola, Moscow. 1975. (In Russ.)
  • Grove G.N., Brudvig G.W. 1998. Calcium binding studies of photosystem II using a calcium-selective electrode. Biochemistry 37: 1532-1539.
  • Grzesiak M.T., Rzepka A., Czyczyło-Mysza I., Hura T., Dziurka M. 2008. Emision and excitation spectra of drought-stressed and non-stressed maize and triticale seedlings leaves. Zesz. Probl. Post. Nauk Roln. 524: 151-166.
  • Jarvis M.C. 1982. The proportion of calcium-bounded pectin in plant cell walls. Planta 154: 344-346.
  • Klimecka M., Maszyńska G. 2007. Structure and functions of calcium-dependent protein kinases. Acta Biochimica Polonica 54: 219-233.
  • Knight H. 2000. Calcium signaling during abiotic stress in plants. Int. Rev. Cytol. 195: 269-324.
  • Knight H., Trewavas A.J., Knight M.R. 1997. Calcium signaling in Arabidopsis thaliana responding to drought and salinity. Plant J. 12: 1067-1078.
  • Kreimer G., Melkonian M., Holtum J.A.M., Latzko E. 1988. Stromal free calcium concentration and light-mediated activation of chloroplast fructose-1,6-biphosphatase. Plant Physiol. 86: 423-428.
  • Li J., Lee Y.-R., Julie A., Assmann S.M. 1998. Guard cells possess a calcium-dependent protein kinase that phosphorylates the KATI potassium channel. Plant Physiol. 116: 785-795.
  • Маttoo A.K., Marder J.B., Edelman M. 1989. Dynamics of the photosystem II reaction center. Cell 56: 241-246.
  • Mcnamera V.P., Gounaris K. 1995. Granal photosystem II complexes contain only the high redox potential form of cytochrom b-559 which is stabilized by the ligation of calcium. Biochim. Biophys. Acta 1231: 289-296.
  • Moore A., Akerman K.E.O. 1984. Calcium and plant organelles. Plant Cell Environ. 7: 423-429.
  • Morikawa K., Yanagida J. 1981. Visualization of individual DNA molecules in solution by light microscopy: DAPI staining method. J. Biochem. (Tokyo) 89: 693-696.
  • Muto S., Izawa S., Miyaachi S. 1982. Light-induced Ca2+ uptake by intact chloroplasts. FEBS Lett. 139: 250-254.
  • Nedukha О.М. 2006. The influence of water deficit on the structural and functional organization of Sium latifolium leaf cells. Zesz. Probl. Post. Nauk Roln. 509: 75-86.
  • Sai J., Johnson C.H. 2002. Dark-stimulated calcium ion in the chloroplast stroma and cytosol. The Plant Cell 14: 1279-1291.
  • Takahashi A., Camacho P., Lechleiter J.D., Herman B. 1999. Measurement of intracellular calcium. Physiol. Rev. 79: 1089-1125.
  • Vrettos J.S., Brudvig G.W. 2002. Water oxidation chemistry of photosystem II. Phil. Trans. R. Soc. Lond. 357: 1395-1405.
  • Urao T., Katagiri T., Mizoguchi T. 1994. Two genes that encode Ca2+-dependent protein kinases are induced by drought and high salt stresses in Arabidopsis thaliana. Mol. Gen. Genet. 224: 331-340.
  • Wang X.-Q., Wei-Hua W., Assmann S.M. 1998. Differential responses of abaxial and adaxial quard cells of broad bean to abscisic acid and calcium. Plant Physiol. 118: 1421-1429.
  • Young J.J., Мehtа S., Israelsson M., Godoski J., Grill E., Schroeder J.I. 2006. CO2 signaling in guard cells: calcium sensitivity response modulation, a Ca2+-independent phase, and CO2 insensitivity of the gca2 mutant. PNAS 103: 7506-7511.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-05849fb8-6e0a-4cff-8b21-d68a6d2ab2b8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.