PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 80 | 2 |

Tytuł artykułu

Effects of high concentrations of calcium salts in the substrate and its pH on the growth of selected rhododendron cultivars

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
For proper growth and development, rhododendrons need acidic soils, whereas calcium carbonate (CaCO3) in the substrate markedly limits their growth. In this study, we analysed the reactions of rhododendrons to high concentrations of calcium salts and pH in the substrate. We used 4-month-old seedlings of Rhododendron ‘Cunningham’s White’ and 1.5-year-old seedlings and rooted cuttings of R. ‘Cunningham’s White’ and R. ‘Catawbiense Grandiflorum’. Their reactions depended mostly on calcium salt type added to the substrate (sulphate or carbonate). An increase in concentrations of phenolic compounds was detected mostly in roots of the plants grown in a substrate with a high calcium carbonate content. Addition of calcium salts to the substrate caused a significant rise in total nonstructural carbohydrates in leaves and roots of the studied plants. As compared to the control, an increase in substrate pH in the variant with calcium carbonate limited the activity of acid phosphatase, while lowering of substrate pH in the variant with calcium sulphate, significantly increased its activity. Along with the rise in substrate pH, a remarkable increase was observed in the activity of nonspecific dehydrogenase (DHA) in the substrate with CaCO3, as compared to the control. Unfavourable soil conditions (high calcium content and alkaline pH) caused a decrease in assimilation of minerals by the studied plants (mostly phosphorus and manganese). Our results show that the major factor limiting rhododendron growth is an increase in substrate pH, rather than an increase in the concentration of calcium ions.

Wydawca

-

Rocznik

Tom

80

Numer

2

Opis fizyczny

p.105-114,fig.,ref.

Twórcy

autor
  • Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kornik, Poland
autor

Bibliografia

  • ARNOLD S.S, FERNANDEZ I.J, RUSTAD L.E, ZIBILSKE L.M. 1999. Microbial response of an acid forest soil to experimental soil warming. Biol. Fertil. Soils 30: 239-244.
  • BALAKRISHNAN K., RAJENDRAN C., KULANDAIVELU G. 2000. Differential responses of iron, magnesium, and zinc deficiency on pigment composition, nutrient content, and photosynthetic activity in tropical fruit crops. Photosynthetica 38: 477-479.
  • BECKMAN C.H. 2000. Phenolic-storing cells: keys to programmed cell death and periderm formation in wilt disease resistance and in general defence responses in plants. Physiological Mol. Plant Pathol. 57: 101-110.
  • BOJARCZUK K. 1995. Regeneracja wybranych gatunków i odmian różaneczników z sadzonek pędowych i z kultur in vitro. Plantpress, Kraków. (in Polish with English summary)
  • BOJARCZUK K., KAROLEWSKI P., OLEKSYN ALEKSYN., KIELISZEWSKA-ROKICKA B., ŻYTKOWIAK R., TJOELKER M.G. 2002. Effect of polluted soil and fertilisation on growth and physiology of silver birch (Betula pendula Roth.) seedlings. Pol. J. Environ. Stud. 11: 483-492.
  • BOJARCZUK K., PRZYBYŁ K. 2005. Effect of polluted substrate on growth and health of silver birch (Betula pendula Roth.). Pol. J. Environ. Studies 14: 677-684.
  • BOJARCZUK K., OLEKSYN J., KAROLEWSKI P., ŻYTKOWIAK R. 2006. Response of silver birch (Betula pendula Roth.) seedlings to experimental variation in aluminum concentration. Pol. J. Ecol. 54: 189-200.
  • BORKOWSKA B. 1996. Wymagania roślin borówki wysokiej pochodzących z in vitro. Ogrodnictwo 2: 17-18. (in Polish) CHAANIN A., PREIL W. 1992. Kalkinduzierte Eisenmangel- Chlorose und Einflüsse der Stickstoff-Form auf das Wachstum von Rhododendron. Rhododendron und immergrüne Laubgehölze: 7-22.
  • CHAURASIA B., PANDEY A., PALNI L.M.S. 2005. Distribution, colonization and diversity of arbuscular mycorrhizal fungi associated with central Himalayan rhododendrons. Forest Ecol. Management 207: 315-324.
  • CIERESZKO I., BARBACHOWSKA A. 2000. Sucrose metabolism in leaves and roots of bean (Phaseolus vulgaris L.) during phosphate deficiency. J. Plant Physiol. 156: 640-644.
  • CZEKALSKI M. 1991. Różaneczniki. PWRiL, Warszawa. (in Polish)
  • DREHMEL G., PREILW. 1992. Untersuchungen zur Charakterisierung der Kalktoleranz bei Rhododendron. II.Wirkung steigender Ca2+, HCO3 - und Cl- Konzentrationen auf die in vitroWurzelentwicklung. Rhododendron und immergrüne Laubgehölze: 23-34.
  • GIEL P., BOJARCZUK K. 2002. The effect of high concentration of selected calcium salts on development of microcuttings of rhododendron R. ‘Catawbiense Grandiflorum’ in vitro culture. Dendrobiology 48: 23-29.
  • GREGER M., BERTELL G. 1992. Effects of Ca2+ and Cd2+ on the carbohydrate metabolism in sugar beet (Beta vulgaris). J. Experimental Bot. 43: 167-173.
  • HAISSIG B.E., DICKSON R.E. 1979. Starch measurment in plant tissue using enzymatic hydrolysis. Physiol. Plantarum 47: 151-157.
  • HANSEN J., MØLLER I. 1975. Percolation of starch and soluble carbohydrates from plant tissue for quantitative determination with anthrone. Analytical Biochem. 68: 87-94.
  • HELL R., STEPHAN U.W. 2003. Iron uptake, trafficking and homeostasis in plants. Planta 216: 541-551.
  • HENRIQUES F.S. 2004. Reduction in chloroplast number accounts for the decrease in the photosynthetic capacity of Mndeficient pecan leaves. Plant Sci. 166: 1051-1055.
  • JOHNSON G., SCHAAL L.A. 1957. Accumulation of phenolic substances and ascorbic acid in potato tuber tissue upon injury and their possible role in disease resistance. Am. Potato J. 34: 200-209.
  • KIELISZEWSKA-ROKICKA B., OLEKSYN J., ŻYTKOWIAK R., REICH P.B. 2003. Links between root carbohydrates and seasonal pattern of soil microbial activity of diverse european populations of Pinus sylvestris grown in a provenance plantation. Acta Soc. Bot. Pol. 72: 167-173.
  • LORENC-PLUCIŃSKA G., STOBRAWA K. 2005. Acclimation of poplar trees to heavy metals in polluted habitats: I. Carbohydrate metabolism in fine roots of Populus deltoides. Acta Soc. Bot. Pol. 74: 11-16.
  • OMOKOLO N.D, BOUDJEKO T. 2005. Comparative analyses of alterations in carbohydrates, amino acids, phenols and lignin in roots of three cultivars of Xanthosoma sagittifolium infected by Pythium myriotylum. South African J. Bot. 71: 432-440.
  • PEREIRA R., SOUSA J.P., RIBEIRO R., GONCALVES F. 2006. Microbial indicators in mine soils (S. Domingos Mine, Portugal). Soil Sediment Contamination 15: 147-167.
  • QUILCHANO C., MARAÑÓN T. 2002. Dehydrogenase activity in Mediterranean forest soils. Biol. Fertil. Soils 35: 102-107.
  • RENNENBERG H. 1984. The fate of excess sulfur in higher plants. Ann. Rev. Plant Physiol. 35: 121-153.
  • ROSSEL D., TARRADELLAS J., BITTON G., MOREL J.L. 1997. Use of enzymes in ecotoxicology: A case for dehydrogenase and hydrolytic enzymes. In: J. Tarradellas, G. Bitton, D. Rossel (ed.), Soil Ecotoxicology. CRC Lewis Publishers Inc, Boca Raton Florida, pp. 179-206.
  • SHANE M.W., LAMBERS H., CAWTHRAY G.R., KUHN A.J., SCHURR U. 2008. Impact of phosphorus mineral source (Al-P or Fe-P) and pH on cluster-root formation and carboxylate exudation in Lupinus albus L. Plant Soil 304: 169-178.
  • SINGLETON V.I., ROSSI J.A. 1965. Colorimetry of total phenolics with phosphomolibdic-phosphotungstic acid reagent. Am. J. Enology Viticulture 16: 144-158.
  • SMITH W.H. 1987. The atmosphere and the rhizosphere: Linkages with potential significance for forest tree health. In: R.O. Blasser (ed.), Technical Bulletin of National Council of the Paper Industry forAir and Stream Improvements. New York, pp. 30-94.
  • SPIERS J.M. 1984. Influence of lime and sulfur soil additions on growth, yield and leaf nutrient content of Rabbiteye blueberry. J. Am. Soc. Hort Sci. 109: 559-562.
  • STARCK Z. 2002. Rola składników mineralnych w roślinie. In: J. Kopcewicz, S. Lewak (ed), Fizjologia roślin. PWN Warszawa, pp. 228-239.
  • STRÖM L., OWEN A.G., GODBOLD D.L., JONES D.L. 2005. Organic acid behaviour in a calcareous soil implications for rhizosphere nutrient cycling. Soil Biol. Biochem. 37: 2046-2054.
  • SZADELA., LORENC-PLUCIŃSKA G. 2002. Metabolizm sacharozy u roślin oraz jego regulacja w warunkach stresów środowiskowych. Postępy biologii komórki 29: 47-59. (in Polish)
  • TABATABAI M.A., BREMNER J.M. 1969. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biology and Biochemistry 1: 301-307.
  • THALMANN A. 1968. Zur Methodik der Bestimmung der Dehydrogenaseaktivität in Boden mittels Triphenyltetrazoliumchlorid (TTC). Landwirt Forsch 21: 249-258.
  • TIWARI O.N., CHAUHAN U.K. 2005. Genus Rhododendron status in Sikkim Himalaya: an assessment. J. Am. Rhododendron Soc. 59: 147-153.
  • WERNERA., KAROLEWSKI P. 2004. The effects of toxic metals, content of nutrients and inoculation with mycorrhizal fungi on the level of phenolics in roots and growth of Scots pine seedlings. Acta Physiologiae Plantarum 26: 177-186.
  • YOUNG K.T., COLOMBO S.J., HICKIE D.F., NOLAND T.L. 1999. Amino acid, carbohydrate, glutathione, mineral nutrient and water potential changes in non-water-stressed Picea mariana seedlings after transplanting. Scand. J. For. Res. 14: 416-424.
  • ZOHLEN A., TYLER G. 2004. Soluble inorganic tissue phosphorus and calcicole-calcifuge behaviour of plants. Ann. Bot. 94: 427-432.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.dl-catalog-f512d0fa-f01b-4476-b974-35ed5e2a0415
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.