PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 20 | 1 |

Tytuł artykułu

The development of the small intestine of piglets - chosen aspects

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The development of the gastrointestinal tract is a very sophisticated process, which starts during prenatal life and continues after birth. Diet is the most important factor modulating structure and functions of the intestine. In the early post-natal period the major role play bioactive substances of colostrum and milk. Their properties influence the dynamics of apoptosis and mitosis and through gastrointestinal tract development they influence animal adaptation to solid feed. The weaning period is associated with dynamic intestinal microflora development, which activity also exert a significant effect on processes taking place in the intestine. Gut function during the development and the response to feed component are often evaluated on the basis of changes in the structure of intestinal mucosa and enzyme activities. The degree of intestinal maturation influence nutrient digestibility, feed efficiency and immunity, thus greatly affecting animal production.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

20

Numer

1

Opis fizyczny

p.3-15,ref.

Twórcy

autor
  • The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jablonna, Poland
autor

Bibliografia

  • Baintner K., 1994. Demonstration of acidity in intestinal vacuoles of the suckling rat and pig. J. Histochem. Cytochem. 42, 231-238
  • Belley A., Keller K., Gottke M., Chadee K., 1999. Intestinal mucins in colonization and host defense against pathogens. Amer. J. Trop. Med. Hyg. 60, 10-15
  • Biernat M., Woliński J., Godlewski M.M., Motyl T., Morisset J., Zabielski R., 2003. Apoptosis in the gut of neonatal piglets. In: Proceedings of the 9th International Symposium on Digestive Physiology in Pigs. University of Alberta, Edmonton (Canada), pp. 46-48
  • Biol M.C., Pintori S., Mathian B., Louisot P., 1991. Dietary regulation of intestinal glycosyl-transferase activities: relation between developmental changes and weaning in rats. J. Nutr. 121, 114-125
  • Blum J.W., Baumrucker C.R., 2002. Colostral and milk insuline-like growth factors and related substances: mammary gland and neonatal (intestinal and systemic) targets. Domest. Anim. Endocrinol. 23, 101-110
  • Bullen C.L., Tearle P.V., Stewart M.G., 1977. The effect of “humanised” milks and supplemented breast feeding on the faecal flora of infants. J. Med. Microbiol. 10, 403-413
  • Burrin D.G., Petersen Y., Stoll B., Sangild P., 2001. Glucagon-like peptide 2: a nutrient-responsive gut growth factor. J. Nutr. 131, 709-712
  • Bursch W., 2001. The autophagosomal-lysosomal compartment in programmed cell death. Cell Death Differentiation 8, 569-581
  • Cera K.R., Manham D.C., Cross R.F., Reinhart G.A., Whitmoyer R.E., 1988. Effect of age, weaning and postweaning diet on small intestinal growth and jejunal morphology in young swine. J. Anim. Sci. 66, 574-584
  • Deplancke B., Gaskins H.R., 2001. Microbial modulation of innate defence: goblet cells and the intestinal mucus layer. Amer. J. Clin. Nutr. 73, S1131-S1141
  • Forder R.E.A., Howarth G.S., Tivey D.R., Hughes R.J., 2007. Bacterial modulation of small intestinal goblet cells and mucin composition during early posthatch development of poultry. Poultry Sci. 86, 2396-2403
  • Godlewski M. M., Hallay N., Bierła J.B., Zabielski R., 2007. Molecular mechanism of programmed cell death in the gut epithelium of neonatal piglets. J. Physiol. Pharmacol. 58, Suppl. 3, 97-113
  • Godlewski M.M., Słupecka M., Woliński J., Skrzypek T., Skrzypek H., Motyl T., Zabielski R., 2005. Into the unknown - the death pathways in the neonatal gut epithelium. J. Physiol. Pharmacol. 56, Suppl. 3, 7-24
  • Greco S., Niepceron E., Hugueny I., George P., Louisot P., Biol M.-C., 2001. Dietary spermidine and spermine participate in the maturation of galactosyltransferase activity and glycoprotein galactosylation in rat small intestine. J. Nutr. 131, 1890-1897
  • Guilloteau P., Biernat M., Woliński J., Zabielski R., 2002. Gut regulatory peptides and hormones of the small intestine. In: R. Zabielski, P.C. Gregory, B. Weström (Editors). Biology of the Intestine in Growing Animals. Elsevier, Amsterdam, pp. 325-362
  • Hedemann M.S., Knudsen K.E.B., 2007. Resistant starch for weaning pigs - effect on concentration of short chain fatty acids in digesta and intestinal morphology. Livest. Sci. 108, 175-177
  • Konstantinov S.R., Favier C.F., Zhu W.Y., Williams B.A., Kluss J., Souffrant W.-B., De Vos W.M., Akkermans A.D.L., Smidt H., 2004. Microbial diversity studies of the porcine gastrointestinal ecosystem during weaning transition. Anim. Res. 53, 317-324
  • Lamparska-Przybysz M., Gajkowska B., Motyl T., 2005. Cathepsins and BID are involved in the molecular switch between apoptosis and autophagy in breast cancer MCF-7 cells exposed to camptothecin. J. Physiol. Pharmacol. 56, Suppl. 3, 159-179
  • Le Dividich J., Seve B., 2000. Effects of underfeeding during the weaning period on growth, metabolism, and hormonal adjustments in the piglet. Domest. Anim. Endocrinol. 19, 63-74
  • Leschelle X., Robert V., Delpal S., Mouille B., Mayeur C., Martel P., Blachier F., 2002. Isolation of pig colonic crypts for cytotoxic assay of luminal compounds: effects of hydrogen sulfide, ammonia, and deoxycholic acid. Cell Biol. Toxicol. 18, 193-203
  • Lindemann M.D., Cornelius S.G., El Kandelgy S.M., Moser R.L., Pettigrew J.E., 1986. Effect of age, weaning and diet on digestive enzyme levels in the piglet. J. Anim. Sci. 62, 1298-1307
  • Makkink C.A., Negulescu G.P., Guixin Q., Verstegen M.W.A., 1994. Effect of dietary protein source on feed intake, growth, pancreatic enzyme activities and jejunal morphology in newly-weaned piglets. Brit. J. Nutr. 72, 353-368
  • Marion J., Rome V., Savary G., Thomas F., Le Dividich J., Le Huërou-Luron I., 2003. Weaning and feed intake alter pancreatic enzyme activity and corresponding mRNA levels in 7-d-old piglets. J. Nutr. 133, 362-366
  • Medzhitov R., 2001. Toll-like receptors and innate immunity. Nat. Rev. Immunol. 1, 135-145
  • Montagne L., Piel C., Lallès J.P., 2004. Effect of diet on mucin kinetics and composition: nutrition and health implications. Nutr. Rev. 62, 105-114
  • Motyl T., Gajkowska B., Zarzyńska J., Gajewska M., Lamparska-Przybysz M., 2006. Apoptosis and autophagy in mammary gland remodeling and breast cancer chemotherapy. J. Physiol. Pharmacol. 57, Suppl. 7, 17-32
  • Nillson U., Nyman M., 2005. Short-chain fatty acid formation in the hindgut of rats fed oligosaccharides varying in monomeric composition, degree of polymerisation and solubility. Brit. J. Nutr. 94, 705-713
  • Odle J., Zijlstra R.T., Donovan S.M., 1996. Intestinal effects of milkborne growth factors in neonates of agricultural importance. J. Anim. Sci. 74, 2509-2522
  • Owsley W.F., Orr D.E., Tribble L.F., 1986. Effects of nitrogen and energy source on nutrient digestibility in the young pig. J. Anim. Sci. 63, 492-496
  • Pacha J., 2000. Development of intestinal transport function in mammals. Physiol. Rev. 80, 1633-1667
  • Pierzynowski S.G., Weström B.R., Svendsen J., Karlsson B.W., 1990. Development of exocrine pancreas function in chronically cannulated pigs during 1-13 weeks of postnatal life. J. Pediat. Gastroenterol. Nutr. 10, 206-212
  • Pluske J.R., Hampson D.J., Williams I.H., 1997. Factors influencing the structure and function of the small intestine in the weaned pig: a review. Livest. Prod. Sci. 51, 215-236
  • Porter E.M., Bevins C.L., Ghosh D., Ganz T., 2002. The multifaceted Paneth cell. Cell. Mol. Life Sci. 59, 156-170
  • Potten C.S., Merritt A., Hickman J., Hall P., Faranda A., 1994. Characterization of radiation-induced apoptosis in the small intestine and its biological implications. Int. J. Radiat. Biol. 65, 71-78
  • Rakoff-Nahoum S., Paglino S., Eslami-Varzaneh F., Edberg S., Medzhitov R., 2004. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118, 229-241
  • Sangild P.T., Fowden A.L., Trahair J.F., 2000. How does the foetal gastrointestinal tract develop in preparation for enteral nutrition after birth? Livest. Prod. Sci. 66, 141-150
  • Shub M.D., Pang K.Y., Swann D.A., Walker W.A., 1983. Age-related changes in chemical composition and physical properties of mucus glycoproteins from rat small intestine. Biochem. J. 215, 405-411
  • Siggers R.H., Thymann T., Siggers J.L., Schmidt M., Hansen A.K., Sangild P.T., 2007. Bacterial colonization affects early organ and gastrointestinal growth in the neonate. Livest. Sci. 109, 14-18
  • Skrzypek T., Valverde Piedra J.L., Skrzypek H., Woliński J., Kazimierczak W., Szymańczyk S., Pawłowska M., Zabielski R., 2005. Light and scanning electron microscopy evaluation of the postnatal small intestinall mucosa development in pigs. J. Physiol. Pharmacol. 56, Suppl. 3, 71-87
  • Soergel K.H., 1994. Colonic fermentation: metabolic and clinical implications. Clin. Invest. 72, 742-748
  • Stoll B., 2006. Intestinal uptake and metabolism of threonine: nutritional impact. Adv. Pork Prod. 17, 257-263
  • Strzałkowski A.K., Godlewski M.M., Hallay N., Kulasek G., Gajewski Z., Zabielski R., 2007. The effect of suplementing sow with bioactive substances on neonatal small intestinal epithelium. J. Physiol. Pharmacol. 58, Suppl. 3, 115-122
  • Suzuki H., Yanaka A., Shibahara T., Matsui H., Nakahara A., Tanaka N., Muto H., Momoi T., Uchiyama Y., 2002. Ammonia-induced apoptosis is accelerated at higher pH in gastric surface mucous cells. Amer. J. Physiol. - Gastrointest. L 283, G968-G995
  • Święch E., Boryczka M., Taciak M., Tuśnio A., Buraczewska L., 2010. Goblet cells in the small intestine of young pigs fed low-threonine diet supplemented with threonine or with different sources of nonessential amino acids. In: Proceedings of the Symposium on Energy and Protein Metabolism and Nutrition. EAAP Publication No. 127. Parma (Italy), pp. 207-208
  • Taatjes D.J., Roth J., 1990. Selective loss of sialic acids from rat small intestinal epithelial cells during postnatal development: demonstration with lectin-gold techniques. Eur. J. Cell Biol. 53, 255-266
  • Teichberg S., Isolauri E., Wapnir R.A., Roberts B., Lifshitz F., 1990. Development of the neonatal rat small intestinal barrier to nonspecific macromolecular absorption: effect of early weaning to artificial diets. Pediat. Res. 28, 31-37
  • Topping D.L., Clifton P.M., 2001. Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol. Rev. 81, 1031-1064
  • Torres-Pinedo R., Mahmood A., 1984. Postnatal changes in biosynthesis of microvillus membrane glycans of rat small intestine: evidence of a development shift from terminal sialylation to fucosylation. Biochem. Biophys. Res. Commun. 125, 546-553
  • Turck D., Feste A.S., Lifschitz C.H., 1993. Age and diet affect the composition of porcine colonic mucins. Pediat. Res. 33, 564-567
  • Verburg M., Renes I.B., Meijer H.P., Taminiau J.A.J.M., Büller H.A., Einerhand A.W.C., Dekker J., 2000. Selective sparing of goblet cells and Paneth cells in the intestine of methotrexate-treated rats. Amer. J. Physiol. - Gastrointest. L 279, G1037-G1047
  • Willing B.P., Van Kessel A.G., 2007. Enterocyte proliferation and apoptosis in the caudal small intestine is influenced by the composition of colonizing commensal bacteria in the neonatal gnotobiotic pig. J. Anim. Sci. 85, 3256-3266
  • Woliński J., Biernat M., Guilloteau P., Weström B.R., Zabielski R., 2003. Exogenous leptin controls the development of the small intestine in neonatal piglets. J. Endocrinol. 177, 215-222
  • Xu R.J., Mellor D.J., Tungthanathanich P., Birtles M.J., Reynolds G.W., Simpson H.V., 1992. Growth and morphological changes in the small intestine in piglets during the first three days after birth. J. Develop. Physiol. 18, 161-172
  • Xu R.J., Sangild P.T., Zhang Y.Q., Zhang S.H., 2002. Bioactive compounds in porcine colostrum and milk and their effects on intestinal development in neonatal pigs. In: R. Zabielski, P.C. Gregory, B. Weström (Editors). Biology of the Intestine in Growing Animals. Elsevier, Amsterdam, pp. 169-192
  • Xu R.J., Wang F., Zhang S.H., 2000. Postnatal adaptation of the gastrointestinal tract in neonatal pigs: a possible role of milk-borne growth factors. Livest. Prod. Sci. 66, 95-107
  • Younes H., Demigne C., Remsey C., 1996. Acidic fermentation in the caecum increases absorption of calcium and magnesium in the large intestine of rat. Brit. J. Nutr. 75, 301-314
  • Zabielski R., Godlewski M.M., Guilloteau P., 2008. Control of development of gastrointestinal system in neonates. J. Physiol. Pharmacol. 59, Suppl. 1, 35-54

Uwagi

rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.dl-catalog-d57c95f3-6f25-4217-b37a-1de5c6efeb6d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.