EN
Nitrous oxide (N₂O) was one of the major atmospheric greenhouse gases. Its budget was poorly understood in alpine meadow, a dominant vegetation type on the Tibetan Plateau. To characterize a Kobresia humilis meadow on the plateau, N₂O emission rates were monitored from June 2003 to June 2006 in the study area located at 3280 m a.s.l. Nine plots with 1 m × 1 m each were divided into three treatments, i.e. intact herbaceous community (HCK), removal of aboveground plant biomass (CBK), and removal of both above and belowground plant biomass (BSK), to estimate contribution of plants, r hizosphere and bulk soil to the total N₂O emission. N₂O emission from plant aboveground biomass was calculated by flux difference between HCK and CBK, denoted as F (HCK-CBK), from rhizosphere by F (CBK-BSK), and from bulk soil was the flux in BSK treatment. Static chambers (height 50 cm, area 0.5 × 0.5 m²) were used for gas collection. N₂O emission rate was significantly correlated with soil temperature at 5 cm depth in both HCK and BSK (P <0.001). Both treatments demonstrated a seasonal peak rate in growing season and minimum rate in dormancy period. The mean emission rates in the three years were 39.7±2.9 and 30.6±2.5 μg m⁻² h⁻¹ in HCK and BSK, respectively, with the former significantly higher than the latter (P <0.05). In CBK, however, the emission rate did not show consistent correlation with soil temperature, especially in growing season. Its three-year mean emission rate was 36.2±3.3 μg m⁻² h⁻¹. In the K. humilis meadow, bulk soil contributed much more than plants and rhizosphere. The mean emission rate was 3.5±2.9, 5.7±3.8, and 30.6±2.5 μg m⁻² h⁻¹ (P <0.001) from plants, rhizosphere and bulk soil, and these accounted for 9, 14 and 77%, separately. Our results implied that N₂O emission rate decreased little with grazing as indicated by the difference between HCK and CBK in K. humilis meadow (P <0.05). N₂O emission from alpine meadow could not be ignored in addressing regional greenhouse gases budget on the Tibetan Plateau, considering the vast area and much higher radiative forcing of N₂O.