PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 20 | 2 |

Tytuł artykułu

Effect of the gynosaponin on methane production and microbe numbers in a fungus-methanogen co-culture

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This study investigated the effect of saponins gypenoside (gynosaponins) on methane production and microbe numbers in a co-culture of a fungus, Piromyces sp. F1, and a methanogen, Methanobrevibacter sp.. Two co-culture systems were used: with methanogen (co-culture I) and without methanogen (co-culture II; methanogen growth inhibited by chloramphenicol). Each co-culture system was treated with 0, 50, 100 or 200 mg gynosaponins/l culture medium. Gas production, methane concentration and volatile fatty acid concentration (VFA) were measured for each treatment group. The numbers of anaerobic fungi and methanogen were quantified by real time PCR. The results showed that, compared with the control, gynosaponin significantly reduced the gas production, methane concentration, methane to TVFA ratio (total volatile fatty acid), TVFA concentration, number of fungi (except for 50 mg dose of gynosaponin in co-culture I) and number of methanogens. Methane was not detected in co-culture II. The individual VFAs proportion of TVFA were not affected by gynosaponins in either of the co-cultures. The pH was higher in both co-cultures than that of the control (P<0.01). These data suggest that gynosaponins has the potential for being used as feed additive to modulate the ruminal fermentation, inhibit the methanogen growth and reduce methane production.

Wydawca

-

Rocznik

Tom

20

Numer

2

Opis fizyczny

p.272-284,fig.,ref.

Twórcy

autor
  • Laboratory of Gastrointestinal Microbiology, Nanjing Agricultural University, Nanjing 210095, P.R.China
autor
  • Laboratory of Gastrointestinal Microbiology, Nanjing Agricultural University, Nanjing 210095, P.R.China
autor
  • Laboratory of Gastrointestinal Microbiology, Nanjing Agricultural University, Nanjing 210095, P.R.China
autor
  • Laboratory of Gastrointestinal Microbiology, Nanjing Agricultural University, Nanjing 210095, P.R.China
autor
  • Laboratory of Gastrointestinal Microbiology, Nanjing Agricultural University, Nanjing 210095, P.R.China
autor
  • Laboratory of Gastrointestinal Microbiology, Nanjing Agricultural University, Nanjing 210095, P.R.China
autor
  • Laboratory of Gastrointestinal Microbiology, Nanjing Agricultural University, Nanjing 210095, P.R.China

Bibliografia

  • Bauchop T., Mountfort D.O., 1981. Cellulose fermentation by a rumen anaerobic fungus in both the absence and the presence of rumen methanogens. Appl. Environ. Microbiol. 42, 1103-1110
  • Boechaert C., Vlaeminck B., Fievez V., Maignien L., Dijkstra J., Boon N., 2008. Accumulation of trans C18:1 fatty acids in the rumen after dietary algal supplementation is associated with changes in the butyrivibrio community. Appl. Environ. Microbiol. 74, 6923-6930
  • Cheeke P.R., 1996. Biological effects of feed and forage saponins and their impacts on animal production. Adv. Exp. Med. Biol. 405, 377-385
  • Cheng Y.F., Edwards J.E., Allison G.G., Zhu W.Y., Theodorou M.K., 2009. Diversity and activity of enriched ruminal cultures of anaerobic fungi and methanogens grown together on lignocellulose in consecutive batch culture. Bioresour. Technol. 100, 4821-4828
  • Cheng Y.F., Mao S.Y., Pei C.X., Liu J.X., Zhu W.Y., 2006. Detection and diversity analysis of rumen methanogens in the co-cultures with anaerobic fungi. Acta Microbiol. Sinica 46, 879-883
  • Cottyn B.G., Boucque C.V., 1968. Rapid method for the gas-chromatographic determination of volatile fatty acids in rumen fluid. J. Agr. Food Chem. 16, 105-107
  • Cui J., Eneroth P., Bruhn J.S., 1999. Gynostemma pentaphyllum: identification of major sapogenins and differentiation from Panax species. Eur. J. Pharm. Sci. 8, 187-191
  • Davies D.R., Theodorou M.K., Brooks A.E., Trinci A.P.J., 1993. Influence of drying on the survival of anaerobic fungi in rumen digesta and faeces of cattle. FEMS Microbiol. Lett. 106, 59-63
  • Denman S.E., McSweeney C.S., 2006. Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbiol. Ecol. 58, 572-582
  • Denman S.E., Tomkins N.W., McSweeney C.S., 2007. Quantitation and diversity analysis of ruminal methanogenic populations in response to the antimethanogenic compound bromochloromethane. FEMS Microbiol. Ecol. 62, 313-322
  • Díaz A., Avendano M., Escobar A., 1993. Evaluation of Sapindus saponaria as a defaunating agent and its effects on different ruminal digestion parameters. Livest. Res. Rural Dev. 5, 1-6
  • Dong G.Z., Wang X.J., Liu Z.B., Wang F., 2010. Effects of phytogenic products on in vitro rumen fermentation and methane emission in goats. J. Anim. Feed Sci. 19, 218-229
  • Doyle J.J., Doyle J.L., 1987. A rapid DNA isolation procedure from small quantities of fresh leaf tissue. Phytochem. Bull. 19, 11-15
  • Eryavuz A., Dehority B.A., 2004. Effect of Yucca schidigera extract on the concentration of rumen microorganisms in sheep. Anim. Feed Sci. Tech. 117, 215-222
  • Fernandes E.K.K., Keyser C.A., Rangel D.EN., Foster R.N., Roberts D.W., 2010. CTC medium: A novel dodine-free selective medium for isolating entomopathogenic fungi, especially Metarhizium acridum, from soil. Biol. Control. 54, 197-205
  • Garcia-Gonzalez R., Lopez S., Fernandez M., González J.S., 2008. Dose-response effects of Rheum officinale root and Frangula alnus bark on ruminal methane production in vitro. Anim. Feed Sci. Tech. 145, 319-334
  • Guo Y.Q., Liu J.X., Lu Y., Zhu W.Y., Denman S.E., McSweeney C.S., 2008. Effect of tea saponin on methanogenesis, microbial community structure and expression of mcrA gene, in cultures of rumen micro-organisms. Lett. Appl. Microbiol. 47, 421–426
  • Hu W.L., Liu J.X., Ye J.A., Wu Y.M., Guo Y.Q., 2005. Effect of tea saponin on rumen fermentation in vitro. Anim. Feed Sci. Tech. 120, 333-339
  • Joblin K.N., 1981. Isolation, enumeration, and maintenance of rumen anaerobic fungi in roll tubes. Appl. Environ. Microbiol. 42, 1119-1122
  • Jouany J.P., 1982. Volatile fatty acids and alcohol determination in digestive contents, silage juice, bacterial cultures and anaerobic fermentor contents. Sci. Alim. 2, 131-144
  • Jung H.J., Lee C.O., Lee K.T., Choi J., Park H.J., 2004. Structure-activity relationship of oleanane disaccharides isolated from Akebia quinata versus cytotoxicity against cancer cells and NO inhibition. Biol. Pharm. Bull. 27, 744-747
  • Kostyukovsky V.A., Okunev O.N., Tarakanov B.V., 1991. Description of two anaerobic fungal strains from the bovine rumen and influence of diet on the fungal population in vivo. J. Gen. Microbiol. 137, 1759-1764
  • Lee S.S., Ha J.K., Cheng K.J., 2000. Relative contributions of bacteria, protozoa, and fungi to in vitro degradation of orchard grass cell walls and their interactions. Appl. Environ. Microbiol. 66, 3807-3813
  • Lu C.D., Jorgensen N.A., 1987. Alfalfa saponins affect site and extent of nutrient digestion in ruminants. J. Nutr. 117, 919-927
  • Mao H.L., Wang J.K., Zhou Y.Y., Liu J.X., 2010. Effects of addition of tea saponins and soybean oil on methane production, fermentation and microbial population in the rumen of growing lambs. Livest. Sci. 129, 56-62
  • Mathison G.W., Okine E.K., McAllister T.A., Okine E.K., 1998. Reducing methane emissions from ruminant animals. J. Appl. Anim. Res. 14, 1-28
  • Mountfort D.O., Asher R.A., Bauchop T., 1982. Fermentation of cellulose to methane and carbon dioxide by a rumen anaerobic fungus in a triculture with Methanobrevibacter sp. Strain RA1 and Methanosarcina barkeri. Appl. Environ. Microbiol. 44, 128-134
  • Muetzel S., Hoffmann E.M., Becker K., 2003. Supplementation of barley straw with Sesbania pachycarpa leaves in vitro: effects on fermentation variables and rumen microbial population structure quantified by ribosomal RNA-targeted probes. Brit. J. Nutr. 89, 445-453
  • Nakashimada Y., Marwoto B., Kashiwamura T., 2000. Enhanced 2,3-butanediol production by addition of acetic acid in Paenibacillus polymyxa. J. Biosci. Bioeng. 90, 661-664
  • Orpin C.G., 1976. Studies on the rumen flagellate Sphaeromonas communis. J. Gen. Microbiol. 94, 270-280
  • Osbourn A., 1996. Saponins and plant defence - a soap story. Trends Plant Sci. 1, 4-9
  • Pen B., Sar C., Mwenya B., Takahashi J., 2008. Effects of Quillaja saponaria extract alone or in combination with Yucca schidigera extract on ruminal fermentation and methanogenesis in vitro. Anim. Sci. J. 79, 193–199
  • Price K.R., Johnson I.T., Fenwick G.R., 1987. The chemistry and biological significance of saponins in food and feeding stuffs. Crit. Rev. Food Sci. Nutr. 26, 27-133
  • Ravella S.R., Quiňones T.S., Retter A., Heiermann M., Amonc T., Hobbs P.J., 2010. Extracellular polysaccharide (EPS) production by a novel strain of yeast-like fungus Aureobasidium pullulans. Carbohyd. Polym. 82, 728-732
  • Singh B., Bhat T.K., Sharma O.P., 2001. Biodegradation of tannic acid in an in vitro ruminal system. Livest. Prod. Sci. 68, 259-262
  • Staerfl S.M., Kreuzer M., Soliva C.R., 2010. In vitro screening of unconventional feeds and various natural supplements for their ruminal methane mitigation potential when included in a maize-silage based diet. J. Anim. Feed Sci. 19, 651-664
  • Su Y., Yao W., Perez-Gutierrez O.N., Smidt H., Zhu W.Y., 2008. 16S ribosomal RNA-based methods to monitor changes in the hindgut bacterial community of piglets after oral administration of Lactobacillus sobrius S1. Anaerobe 14, 78-86
  • Szumacher-Strabel M., Cieślak A., 2010. Potential of phytofactors to mitigate rumen ammonia and methane production. J.Anim. Feed Sci. 19, 319-337
  • Teferedegne B., McIntosh F., Osuji P.O., Wallace R.J., Newbold C.J., 1999. Influence of foliage from different accessions of the sub-tropical leguminous tree, Sesbania sesban, on ruminal protozoa in Ethiopian and Scottish sheep. Anim. Feed Sci. Tech. 78, 11-20
  • Teunissen M.J., Kets E.P., Op den Camp H.J., Huis in’t Veld J.H., Vogels G.D., 1992. Effect of coculutre of anaerobic fungi isolated from ruminants and non-ruminants with methanogenic bacteria on cellulolytic and xylanolytic enzyme activities. Arch. Microbiol. 157, 176-182
  • Theodorou M.K., David D.R., Nielsen B.B., Lawrence M.I.G., Trinci P.J., 1995. Determination of growth of anaerobic fungi on soluble and cellulosic substrates using a pressure transducer. Microbiology 141, 671-678
  • Wang X.F., Mao S.Y., Zhu W.Y., 2011. Effects of gypenoside on in vitro ruminal microbial methane production and fermentation characteristics. Acta Pratacult. Sinica 20, 52-59
  • Wang Y., McAllister T.A., Yanke L.J., Cheeke P.R., 2000. Effect of steroidal saponin from Yucca schidigera extract on ruminal microbes. J. Appl. Microbiol. 88, 887-896
  • Wina E., Muetzel S., Hoffmann E., Makkar H.P.S., Becker K., 2005. Saponins containing methanol extract of Sapindus rarak affect microbial fermentation, microbial activity and microbial community structure in vitro. Anim. Feed Sci. Tech. 121, 159-174

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.dl-catalog-bf5a618f-7755-49a9-8fb2-1054a19efe08
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.