PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 61 | 2 |

Tytuł artykułu

Pulsating electromagnetic field stimulation prevents cell death of puromycin treated U937 cell line

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Aim of study was to verify whether pulsating electromagnetic field (PEMF) can affect cancer cells proliferation and death. U937 human lymphoid cell line at densities starting from 1x106 cells/ml to 0.0625x106 cells/ml, were exposed to a pulsating magnetic field 50Hz, 45±5 mT three times for 3 h per each stimulation with 24 h intervals. Proliferation has been studied by counting number of cells stimulated and non-stimulated by PEMF during four days of cultivation. viability of cells was analyzed by APC labeled Annexin V and 7-AAD (7-amino-actinomycin D) dye binding and flow cytometry. Growing densities of cells increase cell death in cultures of U937 cells. PEMF exposition decreased amount of cells only in higher densities. Measurement of Annexin V binding and 7-AAD dye incorporation has shown that density-induced cell death corresponds with decrease of proliferation activity. PEMF potentiated density-induced death both apoptosis and necrosis. The strongest influence of PEMF has been found for 1x106cells/ml and 0.5x106 cells/ml density. To eliminate density effect on cell death, for further studies density 0.25x106 cells/ml was chosen. Puromycin, a telomerase inhibitor, was used as a cell death inducer at concentration 100 µg/ml. Combined interaction of three doses of puromycin and three fold PEMF interaction resulted in a reduced of apoptosis by 24,7% and necrosis by 13%. PEMF protects U937 cells against puromycin- induced cell death. PEMF effects on the human lymphoid cell line depends upon cell density. Increased density induced cells death and on the other hand prevented cells death induced by puromycin.

Wydawca

-

Rocznik

Tom

61

Numer

2

Opis fizyczny

p.201-205,fig.,ref.

Twórcy

  • Jagiellonian Univesity Medical College, 18 Czysta Str., 31-125 Krakow, Poland
autor
autor
autor
autor
autor
autor

Bibliografia

  • World Health Organization, International Agency for Research on Cancer. Non-Ionizing Radiation, Part 1, Static and 4 Extremely Low Frequency (ELF) Electric and Magnetic Fields. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Lyon, France 2005; 80: 4-21.
  • Berg H. Problems of weak electromagnetic field effects in cell biology. Bioelectrochem Bioenerg 1999; 48: 355-360.
  • Narita K, Hanakawa K, Kasahara T, Hisamitsu T, Asano K. Induction of apoptotic cell death in human leukemic cell line, HL-60, by extremely low frequency electric magnetic fields: analysis of the possible mechanisms in vitro. in vivo 1997; 11: 329-335.
  • Wang X, Zhou A, Liu M, et al. Effects of ELF capacitively coupled weak electric fields on metabolism of 6B1 cells. Bioelectrochem Bioenerg 1999; 48: 369-373.
  • Aldinucci C, Garcia JB, Palmi M, et al. The effect of strong static magnetic field on lymphocytes. Bioelectromagnetics 2003; 24: 109-117.
  • Wetzel BJ, Nindl G, Vesper DN, Swez JA, Jasti AC, Johnson MT. Electromagnetic field effects: changes in protein phosphorylation in the Jurkat E6.1 cell line. Biomed Sci Instrum 2001; 37: 203-208.
  • Gluck B, Guntzschel V, Berg H. Inhibition of proliferation of human lymphoma cells U937 by a 50 Hz electromagnetic field. Cell Mol Biol (Noisy-le-grand) 2001; 47 Online Pub: OL115-117.
  • Arafa HM, Abd-Allah AR, El-Mahdy MA, Ramadan LA, Hamada FM. Immunomodulatory effects of L-carnitine and q10 in mouse spleen exposed to low-frequency high-intensity magnetic field. Toxicology 2003; 187: 171-181.
  • Johnson MT, Vanscoy-Cornett A, Vesper DN, et al. Electromagnetic fields used clinically to improve bone healing also impact lymphocyte proliferation in vitro. Biomed Sci Instrum 2001; 37: 215-220.
  • Onodera H, Jin Z, Chida S, Suzuki Y, Tago H, Itoyama Y. Effects of 10-T static magnetic field on human peripheral blood immune cells. Radiat Res 2003; 159: 775-779.
  • Jankowska A, Wrzesinski M, Laubitz D, et al. Intestinal MMC-related electric fields and pancreatic juice control the adhesion of Gram-positive and Gram-negative bacteria to the gut epithelium - in vitro study. J Physiol Pharmacol 2008; 59: 795-810.
  • Ahlbom A, Feychting M, Koskenvuo M, et al. Electromagnetic fields and childhood cancer. Lancet 1993; 342(8882): 1295-1296.
  • Taubes G. EMF-cancer links: yes, no, and maybe. Science 1993; 262: 649.
  • Narita K, Hanakawa K, Kasahara T, Hisamitsu T, Asano K. Induction of apoptotic cell death in human leukemic cell line, HL-60, by extremely low frequency electric magnetic fields: analysis of the possible mechanisms in vitro. in vivo 1997; 11: 329-335.
  • Hisamitsu T, Narita K, Kasahara T, Seto A, Yu Y, Asano K. Induction of apoptosis in human leukemic cells by magnetic fields. Jpn J Physiol 1997; 47: 307-310.
  • Sagan LA. Epidemiological and laboratory studies of power frequency electric and magnetic fields. JAMA 1992; 268: 625-629.
  • Kaszuba-Zwoinska J, Ziomber A, Gil K, Bugajski A, Zaraska W, Thor P. Pulsating electromagnetic field induces apoptosis of rat's bowel Cajal's cells. Folia Med Cracov 2005; 46: 87-95.
  • Kaszuba-Zwoinska J, Gil K, Ziomber A, et al. Loss of interstitial cells of Cajal after pulsating electromagnetic field (PEMF) in gastrointestinal tract of the rats. J Physiol Pharmacol 2005; 56: 421-432.
  • Ruediger HW. Genotoxic effects of radiofrequency electromagnetic fields. Pathophysiology 2009; 82: 279-283.
  • Zhao YL, Yang JC, Zhang YH. Effects of magnetic fields on intracellular calcium oscillations. Conference Proc IEEE Eng Med Biol Soc 2008; 2124-2127.
  • Evan GI, Vousden KH. Proliferation, cell cycle and apoptosis in cancer. Nature 2001; 411(6835): 342-348.
  • Arends MJ, Wyllie AH. Apoptosis: mechanisms and roles in pathology. Int Rev Exp Pathol 1991; 32: 223-254.
  • Pierzchalski P, Pytko-Polonczyk J, Jaworek J, Konturek SJ, Gonciarz M. Only live Helicobacter pylori is capable of caspase-3 dependent apoptosis induction in gastric mucosa epithelial cells. J Physiol Pharmacol 2009; 60: 119-128.
  • Kroemer G, Reed JC. Mitochondrial control of cell death. Nat Med 2000; 6: 513-519.
  • Levine B, Sinha S, Kroemer G. Bcl-2 family members: dual regulators of apoptosis and autophagy. Autophagy 2008; 4: 600-606.
  • Cifone MG, De Maria R, Roncaioli P, et al. Apoptotic signalling through CD95 (Fas/Apo-1) activates an acidic sphingomyelinase. J Exp Med 1994; 180: 1547-1552.
  • Kaszuba-Zwoinska J, Ciecko-Michalska I, Madroszkiewicz D, et al. Magnetic field anti-inflammatory effects in Crohn's disease depends upon viability and cytokine profile of the immune competent cells. J Physiol Pharmacol 2008; 59: 177-187.
  • Felaco M, Reale M, Grilli A, et al. Impact of extremely low frequency electromagnetic fields on CD4 expression in peripheral blood mononuclear cells. Mol Cell Biochem 1999; 201: 49-55.
  • Ikeda K, Shinmura Y, Mizoe H, et al. No effects of extremely low frequency magnetic fields found on cytotoxic activities and cytokine production of human peripheral blood mononuclear cells in vitro. Bioelectromagnetics 2003; 24: 21-31.
  • Grassi C, D'Ascenzo M, Torsello A, et al. Effects of 50 Hz electromagnetic fields on voltage-gated Ca2+ channels and their role in modulation of neuroendocrine cell proliferation and death. Cell Calcium 2004; 35: 307-315.
  • Liang GH, Park S, Kim JA, Choi S, Suh SH. Stimulation of large-conductance Ca2+- activated K+ channels by the Na+/Ca2+ exchanger inhibitor dichlorobenzamil in cultured an umbilical vein endothelial cells and mouse aortic smooth muscle cells. J Physiol Pharmacol 2009; 60: 43-50.
  • Sun H, Nikolovska-Coleska Z, Yang CY, et al. Design of small-molecule peptidic and nonpeptidic Smac mimetics. Acc Chem Res 2008; 41: 1264-1277.
  • Dohi T, Beltrami E, Wall NR, Plescia J, Altieri DC. Mitochondrial survivin inhibits apoptosis and promotes tumorigenesis. J Clin Invest 2004; 114: 1117-1127.
  • Salvesen GS, Duckett CS. IAP proteins: blocking the road to death's door. Nat Rev Mol Cell Biol 2002; 3: 401-410.
  • Radogna F, Cristofanon S, Paternoster L, et al. Melatonin antagonizes the intrinsic pathway of apoptosis via mitochondrial targeting of Bcl-2. J Pineal Res 2008; 44: 316-325.
  • Radogna F, Paternoster L, Albertini MC, et al. Melatonin antagonizes apoptosis via receptor interaction in U937 monocytic cells. J Pineal Res 2007; 43: 154-162.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.dl-catalog-908284c2-450d-4253-9e03-7c260deb5d83
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.