PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 51 | 4 |

Tytuł artykułu

Family-based association analysis of the MAPT gene in Parkinson disease

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The MAPT gene has been shown to be associated with several neurodegenerative disorders, including forms of parkinsonism and Parkinson disease (PD), but the results reveal population differences. We investigated the association of 10 single-nucleotide polymorphisms (SNPs) in the region of MAPT on chromosome 17q21 with PD and age at onset, by using 443 discordant sib pairs in PD from a public dataset (Mayo-Perlegen LEAPS Collaboration). Association with PD was assessed by the FBAT using generalized estimating equations (FBAT-GEE), while the association with age at onset as a quantitative trait was evaluated using the FBAT-logrank statistic. Five SNPs were significantly associated with PD (P < 0.05) in an additive model, and 9 SNPs were associated with PD (P < 0.05) in dominant and recessive models. Interestingly, 8 PD-associated SNPs were also associated with age at onset of PD (P < 0.05) in dominant and recessive models. The SNP most significantly associated with PD and age at onset was rs 17649641 (P = 0.015 and 0.021, respectively). Two-SNP haplotypes inferred from rs 17563965 and rs 17649641 also showed association with PD (P = 0.018) and age at onset (P = 0.026). These results provide further support for the role of MAPT in development of PD.

Wydawca

-

Rocznik

Tom

51

Numer

4

Opis fizyczny

p.509-514,fig.,ref.

Twórcy

autor
  • Department of Biostatistics and Epidemiology, College of Public Health, East Tennessee State University, PO Box 70259, Lamb Hall, Johnson City, TN 37614-1700, USA
  • Department of Pathology, James II. Quillen College of Medicine, East Tennessee State University, Johnson City, USA
autor
  • Department of Biostatistics and Epidemiology, College of Public Health, East Tennessee State University, PO Box 70259, Lamb Hall, Johnson City, TN 37614-1700, USA

Bibliografia

  • Andreadis A, Wagner BK, Broderick JA, Kosik KS, 1996. A tau promoter region without neuronal specificity. J Neurochem 66: 2257-2263.
  • Andreadis A, 2005. Tau gene alternative splicing: expression patterns, regulation and modulation of function in normal brain and neurodegenerative diseases. Biochimica et Biophysica Acta 1739: 91-103.
  • Barrett JC, Fry B, Maller J, Daly MJ, 2005. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21: 263-265.
  • Caffrey TM, Wade-Martins R, 2007. Functional MAPT haplotypes: bridging the gap between genotype and neuropathology. Neurobiol Dis 27: 1-10.
  • Das G, Misra AK, Das SK, Ray K, Ray J, 2009. Microtubule-associated protein tau (MAPT) influences the risk of Parkinson's disease among Indians. Neurosci Lett 460: 16-20.
  • DeStefano AL, Lew MF, Golbe LI, Mark MH, Lazzarini AM, Guttman M et al. 2002. PARK3 influences age at onset in Parkinson disease: a genome scan in the GenePD study. Am J Hum Genet 70: 1089-1095.
  • Farrer M, Skipper L, Berg M, Bisceglio G, Hanson M, Hardy J, et al. 2002. The tau H1 haplotype is associated with Parkinson's disease in the Norwegian population. Neurosci Lett 322: 83-86.
  • Fung HC, Xiromerisiou G, Gibbs JR, Wu YR, Eerola J, Gourbali V, et al. 2006. Association of tau haplotype-tagging polymorphisms with Parkinson's disease in diverse ethnic Parkinson's disease cohorts. Neurodegener Dis 3: 327-333.
  • Golbe LI, Lazzarini AM, Spychała JR, Johnson WG, Stenroos ES, Mark MH, et al. 2001. The tau AO allele in Parkinson's disease. Mov Disord 16: 442-447.
  • Golub Y, Berg D, Calne DB, Pfeiffer RF, Uitti RJ, Stoessl AJ, et al. 2007. Genetic factors influencing age at onset in LRRK2-linked Parkinson disease. Parkinsonism Relat Disord 15: 539-541.
  • Goris A, Williams-Gray CH, Clark GR, Foltynie T, Lewis SJ, Brown J, et al. 2007. Tau and alpha-synuclein in susceptibility to, and dementia in, Parkinson's disease. Ann Neurol 62: 145-153.
  • Holzer M, Craxton M, Jakes R, Arendt T, Goedert M, 2004. Tau gene (MAPT) sequence variation among primates. Gene 341: 313-322.
  • Karambataki M, Malousi A, Maglaveras N, Kouidou S, 2010. Synonymous polymorphisms at splicing regulatory sites are associated with CpGs in neurodegenerative disease-related genes. Neuromolecular Med. Epub ahead of print; accessed on May 10, 2010.
  • Klein C, Schneider SA, Lang AE, 2009. Hereditary parkinsonism: Parkinson disease look-alikes: an algorithm for clinicians to "PARK" genes and beyond. Mov Disord 24: 2042-2058.
  • Kobayashi H, Ujike H, Hasegawa J, Yamamoto M, Kanzaki A, Sora I, 2006. Correlation of tau gene polymorphism with age at onset of Parkinson's disease. Neurosci Lett 405: 20-206 .
  • Kouidou S, Malousi A, Maglaveras N, 2009. Li-Fraumeni and Li-Fraumeni-like syndrome mutations in p53 are associated with exonic methylation and splicing regulatory elements. Mol Carcinog 48: 895-902.
  • Krishnamurthy PK, Johnson GVW, 2004. Mutant (R406W) human tau is hyperphosphorylated and does not efficiently bind microtubules in a neuronal cortical cell model. J Biol Chem 279: 7893-7900.
  • Kwok JB, Hallupp M, Loy CT, Chan DK, Woo J, Mellick GD, et al. 2005. GSK3B polymorphisms alter transcription and splicing in Parkinson's disease. Ann Neurol 58: 829-839.
  • Lange C, Silverman EK, Xu X, Weiss ST, Laird NM, 2003. A multivariate family-based association test using generalized estimating equations: FBAT-GEE. 4: 195-206.
  • Lange C, Blacker D, Laird NM, 2004. Family-based association tests for survival and times-to-onset analysis. Stat Med 23: 179-189.
  • Lee VM, Goedert M, Trojanowski JQ, 2001. Neurodegenerative tauopathies. Annu Rev Neurosci 24: 1121-1159.
  • Li YJ, Scott WK, Hedges DJ, Zhang F, Gaskell PC, Nance MA, et al. 2002. Age at onset in two common neurodegenerative diseases is genetically controlled. Am J Hum Genet 70: 985-993.
  • Licatalosi DD, Darnell RB, 2006. Splicing regulation in neurologic disease. Neuron 52: 93-101.
  • Liu F, Gong C, 2008. Tau exon 10 alternative splicing and tauopathies. Mol Neurodegeneration 3:8.
  • Maraganore DM, de Andrade M, Lesnick TG, Strain KJ, Farrer MJ, Rocca WA, et al. 2005. High-resolution whole-genome association study of Parkinson disease. Am J Hum Genet 77: 685-693.
  • Maraganore DM, Hernandez DG, Singleton AB, Farrer MJ, McDonnell SK, Hutton ML, et al. 2001. Case-control study of the extended tau gene haplotype in Parkinson's disease. Ann Neurol 50: 658-661.
  • Martin ER, Scott WK, Nance MA, Watts RL, Hubble JP, Koller WC, et al. 2001. Association of single-nucleotide polymorphisms of the tau gene with late-onset Parkinson disease. JAMA 286: 2245-2250.
  • Mokliatchouk O, Blacker D, Rabinowitz D, 2001. Association tests for traits with variable age at onset. Human Heredity 51: 46-53.
  • Nembaware V, Lupindo B, Schouest K, Spillane C, Scheffler K, Seoighe C, 2008. Genome-wide survey of allele-specific splicing in humans. BMC Genomics 9: 265.
  • Pankratz N, Wilk JB, Latourelle JC, DeStefano AL, Halter C, Pugh EW, et al. 2009. Genome-wide association study for susceptibility genes contributing to familial Parkinson disease. Hum Genet 124: 593-605.
  • Pittman AM, Fung HC, de Silva R, 2006. Untangling the tau gene association with neurodegenerative disorders. Hum Mol Genet Spec. No. 2: R188-195.
  • Poorkaj P, Kas A, D'Souza I, Zhou Y, Pham Q, Stone M et al. 2001. A genomic sequence analysis of the mouse and human microtubule-associated protein tau. Mamm Genome 12: 700-712.
  • Refenes N, Bolbrinker J, Tagaris G, Orlacchio A, Drakoulis N, Kreutz R, 2009. Role of the H1 haplotype of microtubule-associated protein tau (MAPT) gene in Greek patients with Parkinson's disease. BMC Neurol 9: 26.
  • Satake W, Nakabayashi Y, Mizuta I, Hirota Y, Ito C, Kubo M, et al. 2009. Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson's disease. Nat Genet 41: 1303-1307.
  • Simón-Sánchez J, Schulte C, Bras JM, Sharma M, Gibbs JR, Berg D, et al. 2009. Genome-wide association study reveals genetic risk underlying Parkinson's disease. Nat Genet 41: 1308-1312.
  • Sutherland GT, Halliday GM, Silburn PA, Mastaglia FL, Rowe DB, Boyle RS, et al. 2009. Do polymorphisms in the familial Parkinsonism genes contribute to risk for sporadic Parkinson's disease? Mov Disord 24: 833-838.
  • Tobin JE, Latourelle JC, Lew MF, Klein C, Suchowersky O, Shill HA, et al. 2008. Haplotypes and gene expression implicate the MAPT region for Parkinson disease: the GenePD Study. Neurology 71: 28-34.
  • Van Steen K, Lange C, 2005. PBAT: a comprehensive software package for genome-wide association analysis of complex family-based studies. Hum Genomics 2: 67-69.
  • Vandrovcova J, Pittman AM, Malzer E, Abou-Sleiman PM, Lees AJ, Wood NW, et al. 2009. Association of MAPT haplotype-tagging SNPs with sporadic Parkinson's disease. Neurobiol Aging 30: 1477-1482.
  • Winkler S, König IR, Lohmann-Hedrich K, Vieregge P, Kostic V, Klein C, 2007. Role of ethnicity on the association of MAPT H1 haplotypes and subhaplotypes in Parkinson's disease. Eur J Hum Genet 15: 1163-1168.
  • Wolfe MS, 2009. Tau mutations in neurodegenerative diseases. J Biol Chem 284: 6021-6025.
  • Zabetian CP, Hutter CM, Factor SA, Nutt JG, Higgins DS, Griffith A, et al. 2007. Association analysis of MAPT H1 haplotype and subhaplotypes in Parkinson's disease. Ann Neurol 62: 137-144.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.dl-catalog-59dbae28-bc69-4bd9-b08c-cd5d9f00818c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.