PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 12 | 1 |

Tytuł artykułu

On the phylogeny of Miniopterus schreibersii schreibersii and Miniopterus schreibersii pallidus from Asia Minor in reference to other Miniopterus taxa (Chiroptera: Vespertilionidae)

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In this study we investigated phylogenetics of Miniopterus schreibersii schreibersii and M. s. pallidus from Asia Minor by means of two mitochondrial DNA markers, NADH dehydrogenase subunit 2 (ND2) and cytochrome-b) (Cytb). The average genetic divergence between reciprocally monophyletic M. s. schreibersii and M. s. pallidus was 5.6% on ND2 and 3.5% on Cytb. In all phylogenetic trees, the clade with M. s. schreibersii and M. s. pallidus was placed within Palearctic-Ethiopian Miniopterus taxa. There was a considerable genetic divergence (ca. 8% in Cytb) between M. s. pallidus from Israel and M. s. pallidus from Turkey, Iran, and Nagorno-Karabakh, indicating that they probably are not the same taxon. Time to the most recent common ancestor of M. s. schreibersii and M. s. pallidus was estimated to be between 1.98 to 0.60 Myr BP (ND2 data) and between 1.95 to 0.45 Myr BP (Cytb data).

Wydawca

-

Rocznik

Tom

12

Numer

1

Opis fizyczny

p.61-72,fig.,ref.

Twórcy

autor
  • Institute of Environmental Sciences, Bogazici University, 34342 Bebek, Istanbul, Turkey
autor
autor

Bibliografia

  • 1. H. Akaike 1973. Information theory as an extension of the maximum likelihood principle. Pp. 267–281, in Second International Symposium on Information Theory ( B. N. Petrov and F. Csaki , eds.) Akademiai Kiado, Budapest. Google Scholar
  • 2. L Albayrak , and S. Coskun . 2000. Geographic variations and taxonomic status of Miniopterus schreibersii (Kuhl, 1819) in Turkey (Chiroptera: Vespertilionidae). Turkish Journal of Zoology, 24: 125–134. Google Scholar
  • 3. B. R. Appleton , J. A. McKenzie , and L. Christidis . 2004. Molecular systematics and biogeography of the bent-wing bat complex Miniopterus schreibersii (Kuhl, 1817) (Chiroptera: Vespertilionidae). Molecular Phylogenetics and Evolution, 31: 431–439. Google Scholar
  • 4. R. J. Baker , and R. D. Bradley . 2006. Speciation in mammals and the genetic species concept. Journal of Mammalogy, 87: 643–662. Google Scholar
  • 5. R. Bilgin , A. Karatas , E. Çoraman , I. Pandurski , E. Papadatou , and J. C. Morales . 2006. Molecular taxonomy and phylogeography of Miniopterus schreibersii (Kuhl, 1817) (Chiroptera: Vespertilionidae), in the Eurasian transition. Biological Journal of the Linnean Society, 87: 577–582. Google Scholar
  • 6. R. Bilgin , A. Karatas , E. Çoraman , T. Disotell , and J. C. Morales . 2008. Regionally and climatically restricted patterns of distribution of genetic diversity in a migratory bat species, Miniopterus schreibersii (Chiroptera: Vespertilionidae). BMC Evolutionary Biology, 8: 209. Google Scholar
  • 7. R. D. Bradley , and R. J. Baker . 2001. A test of the genetic species concept: cytochrome-b sequences and mammals. Journal of Mammalogy, 82: 960–973. Google Scholar
  • 8. B. R. Cardinal , and L. Christidis . 2000. Mitochondrial DNA and morphology reveal three geographically distinct lineages of the large bentwing bat (Miniopterus schreibersii) in Australia. Australian Journal of Zoology, 48: 1–19. Google Scholar
  • 9. J. Cui , N. Han , D. Streicker , G. Li , X. Tang , Z. Shi , Z. Hu , G. Zhao , A. Fontanet , Y. Guan , L. Wang , G. Jones , H. E. Field , P. Daszak , and S. Zhang . 2007. Evolutionary relationships between bat coronaviruses and their hosts. Emerging Infectious Diseases, 13: 1526–1532. Google Scholar
  • 10. A. J. Drummond , and A. Rambaut . 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7: 214. Google Scholar
  • 11. E. Etemad 1967. Notes on bats from Iran. Mammalia, 31: 275–280. Google Scholar
  • 12. A. Furman , E. Çoraman , R. Bilgin , and A. Karataş . 2009. Molecular ecology and phylogeography of the bent-wing bat complex (Miniopterus schreibersii) (Chiroptera: Vespertilionidae) in Asia Minor and adjacent regions. Zoologica Scripta, 38: 129–141. Google Scholar
  • 13. J. L. Garcia-Mudarra , C. Ibáñez , and J. Juste . 2009. The Straits of Gibraltar: barrier or bridge to Ibero-Moroccan bat diversity? Biological Journal of the Linnean Society, 96: 434–450. Google Scholar
  • 14. S. V. Gazaryan 2005. Geographic variation of Miniopterus schreibersii in the territory of Eastern Europe and Northwestern Asia. Zoologicheskiy Zhurnal, 84: 1136–1143. Google Scholar
  • 15. S. M. Goodman , K. E. Ryan , C. P. Maminirina , J. Fahr , L. Christidis , and B. Appleton . 2007. Specific status of populations on Madagascar referred to Miniopterus fraterculus (Chiroptera: Vespertilionidae), with description of a new species. Journal of Mammalogy, 88: 1216–1229. Google Scholar
  • 16. S. M. Goodman , H. M. Bradman , C. P. Maminirina , K. E. Ryan , L. L. Christidis , and B. Appleton . 2008. A new species of Miniopterus (Chiroptera: Miniopteridae) from lowland southeastern Madagascar. Mammalian Biology, 73: 199–213. Google Scholar
  • 17. S. Guindon , F. Lethiec , P. Duroux , and O. Gascuel . 2005. PHYML Online — a web server for fast maximum likelihood-based phylogenetic inference. Nucleic Acids Research, 1: 33 (Web Server issue): W557-9. Google Scholar
  • 18. F. G. Hoffman , J. G. Owen , and R. J. Baker . 2003. MtDNA perspective on chromosomal diversification and hybridization in Peter's tent-making bat (Uroderma bilobatum: Phyllostomidae). Molecular Ecology, 12: 2981–2993. Google Scholar
  • 19. J. P. Huelsenbeck , and F. Ronquist . 2001. MrBayes: Bayesian inference of phylogeny. Bioinformatics, 17: 754–755. Google Scholar
  • 20. P. Hulva , P. Horáñek , P. P. Strelkov , and P. Benda . 2004. Molecular architecture of Pipistrellus pipistrellus/Pipistrellus pygmaeus complex (Chiroptera: Vespertilionidae): further cryptic species and Mediterranean origin of the divergence. Molecular Phylogenetics and Evolution, 32: 1023–1035. Google Scholar
  • 21. A. M. Hutson , S. Aulagnier , P. Benda , A. Karatas , J. Palmeirim , and M. Paunović . 2008. Miniopterus schreibersii. In IUCN 2009. IUCN Red List of Threatened Species. Version 2009.1. < www.iucnredlist.org>. Downloaded on 1 November 2009. Google Scholar
  • 22. C Ibanez , J. L. Garcia-Mudarra , M. Ruedi , B. Stadelmann , and J. Juste . 2006. The Iberian contribution to cryptic diversity in European bats. Acta Chiropterologica, 8: 277–297. Google Scholar
  • 23. D. M. Irwin , T. D. Kocher , and A. C. Wilson . 1991. Evolution of the cytochrome b gene of mammals. Journal of Molecular Evolution, 32: 128–144. Google Scholar
  • 24. J. Juste , A. Ferrandez , J. E. Fa , W. Masefield , and C. Ibáñez . 2007. Taxonomy of little bent-winged bats (Miniopterus, Miniopteridae) from the African islands of Sao Tome, Grand Comoro and Madagascar, based on mtDNA. Acta Chiropterologica, 9: 27–37. Google Scholar
  • 25. A. Karatas , and M. Sözen . 2004. Contribution to karyology, distribution and taxonomic status of the long-winged bat, Miniopterus schreibersii (Chiroptera: Vespertilionidae), in Turkey. Zoology in the Middle East, 33: 51–64. Google Scholar
  • 26. K. F. Koopman 1994. Chiroptera: systematics. Handbuch der Zoologie. Mammalia 8, Part 60. Walter de Gruyter, New York, 217 pp. Google Scholar
  • 27. H. Kuhl 1817. Die deutschen Fledermäuse. Privately published, Hanau, 67 pp. Google Scholar
  • 28. B. D. Lloyd 2003. Intraspecific phylogeny of the New Zealand short-tailed bat Mystacina tuberculata inferred from multiple mitochondrial gene sequences. Systematic Biology, 52: 460–476. Google Scholar
  • 29. F Mayer , C. Dietz , and A. Kiefer . 2007. Molecular species identification boosts bat diversity. Frontiers in Zoology, 4:4. Google Scholar
  • 30. C. M. Miller-Butterworth , D. S. Jacobs , and E. H. Harley . 2003. Strong population substructure is correlated with morphology and ecology in a migratory bat. Nature, 424: 187–191. Google Scholar
  • 31. C. M. Miller-Butterworth , G. Eick , D. S. Jacobs , M. C. Schoeman , and E. H. Harley . 2005. Genetic and phenotypic differences between South African long-fingered bats, with a global Miniopterine phylogeny. Journal of Mammalogy, 86: 1121–1135. Google Scholar
  • 32. C. M. Miller-Butterworth , W. J. Murphy , S. J. O'Brien , D. S. Jacobs , M. S. Springer , and E. C. Teeling . 2007. A family matter: conclusive resolution of the taxonomic position of the long-fingered bats, Miniopterus. Molecular Biology and Evolution, 24: 1553–1561. Google Scholar
  • 33. M. Nei 1987. Molecular evolutionary genetics. Columbia University Press, New York, 512 pp. Google Scholar
  • 34. R. Nielsen , and J. Wakeley . 2001. Distinguishing migration from isolation: a Markov Monte Carlo approach. Genetics, 158: 885–896. Google Scholar
  • 35. R. M. Nowak 1994. Walker's mammals of the World, 5th edition. Johns Hopkins University Press, Baltimore, 288 pp. Google Scholar
  • 36. J. A. A. Nylander 2004. MrModeltest v2. Evolutionary Biology Centre, Uppsala University. Available at http://www.abc.se/~nylander/mrmodeltest2/MrModeltest2.3.zip. Retrieved 6 October 2008. Google Scholar
  • 37. D. Posada , and T. R. Buckley . 2004. Model selection and model averaging in phylogenetics: advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. Systematic Biology, 53: 793–808. Google Scholar
  • 38. F. Ronquist , and J. P. Huelsenbeck . 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19: 1572–1574. Google Scholar
  • 39. J. Rozas , J. C. Sanchez-Delbarrio , X. Messeguer , and R. Rozas . 2003. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics, 19: 2496–2497. Google Scholar
  • 40. M. Ruedi , and F. Mayer . 2001. Molecular systematics of bats of the genus Myotis (Vespertilionidae) suggests deterministic ecomorphological convergences. Molecular Phylogenetics and Evolution, 21: 436–448. Google Scholar
  • 41. T. Sakai , Y. Kikkawa , K. Tsuchiya , M. Harada , M. Kanoe , M. Yoshiyuki , and H. Yonekawa . 2003. Molecular phylogeny of Japanese Rhinolophidae based on variations in the complete sequence of the mitochondrial cytochrome b gene. Genes and Genetic Systems, 78: 179–189. Google Scholar
  • 42. N. B. Simmons 2005. Order Chiroptera. Pp. 312–529, in Mammal species of the World: a taxonomic and geographic reference ( D. E. Wilson and D. M. Reeder , eds.). Johns Hopkins University Press, Baltimore, 2142 pp. Google Scholar
  • 43. M. F. Smith , and J. L. Patton . 1999. Phylogenetic relationships and the radiation of sigmodontinae rodents in South America: evidence from cytochrome b. Journal of Mammalian Evolution, 6: 89–128. Google Scholar
  • 44. H. Song , J. E. Buhay , M. F. Whiting , and K. A. Crandell . 2008. Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified. Proceedings of the National Academy of Sciences, 105: 13486–13491. Google Scholar
  • 45. B. Stadelmann , D. S. Jacobs , C. Schoeman , and M. Ruedi . 2004. Phylogeny of African myotis bats (Chiroptera, Vespertilionidae) inferred from cytochrome b sequences. Acta Chiropterologica, 6: 177–192. Google Scholar
  • 46. H. M. Steiner , and J. Gaisler . 1994. On a collection of bats (Chiroptera) from NE Turkey and N Iran. Acta Scientiarum Naturalium, Brno, 28: 1–37. Google Scholar
  • 47. D. L. Swofford 2001. PAUP*. Phylogenetic analysis using parsimony (and other methods). Sinauer Associates, Sunderland, MA. Google Scholar
  • 48. F. Tajima 1983. Evolutionary relationship of DNA sequences in finite populations. Genetics, 105: 437–460. Google Scholar
  • 49. F. Tajima 1993. Simple methods for testing molecular clock hypothesis. Genetics, 135: 599–607. Google Scholar
  • 50. K. Tamura , and M. Nei . 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution, 10: 512–526. Google Scholar
  • 51. K. Tamura , J. Dudley , M. Nei , and S. Kumar . 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24: 1596–1599. Google Scholar
  • 52. O. Thomas 1907. On mammals from Northern Persia, presented to the National Museum by Col. A. C. Baiward. The Annals and Magazine of Natural History, 20: 197–202. Google Scholar
  • 53. J. D Thompson , T. J. Gibson , F. Plewniak , F. Jeanmougin , and D. G. Higgins . 1997. The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25: 4876–4882. Google Scholar
  • 54. N. Weyeneth , S. M. Goodman , W. T. Stanley , and M. Ruedi . 2008. The biogeography of Miniopterus bats (Chiroptera: Miniopteridae) from the Comoro Archipelago inferred from mitochondrial DNA. Molecular Ecology, 17: 5205–5219. Google Scholar
  • 55. J. Worthington Wilmer , and E. Barratt . 1996. A non-lethal method of tissue sampling for genetic studies of chiropterans. Bat Research News, 37: 1–3. Google Scholar
  • 56. J. Worthington Wilmer , C. Moritz , L. Hall , and J. Toop . 1994. Extreme population structuring in the threatened ghost bat, Macroderma gigas: evidence from mitochondrial DNA. Proceedings of the Royal Society of London, 257B: 193–198. Google Scholar

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.dl-catalog-535f00f1-abe2-4981-b03f-598ac64cf0c9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.