PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 70 | 1 |

Tytuł artykułu

Mineral constituents of conserved white button mushrooms: similarities and differences

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Background. Mushrooms are a food that is often considered as an important source of minerals and other nutrients for consumers. There is little data on the minerals in mushrooms processed culinary and on the impact of processing. Objective. The research was aimed at understanding the similarities and differences in the mineral composition (Hg, Li, Mg, Al, Co, Ni, Cu, As, Se, Rb, Sr, Ag, Cd, Cs, Sb, Tl, Pb, U, Ba, Cr, Zn, Mn and V) of white button mushrooms (Agaricus bisporus) processed in industrial conditions. Material and methods. Fungal materials came from six producers. The elements were determined by ICP-MS DRC and CV-AAS using validated methods and QA/QC protocol. The interdependencies of 18 elements and 10 batches of mushrooms examined were tested with the help of principal component analysis. Results. Some significant differences were found in the content and composition of minerals in marinated white button mushrooms depending on producer. Conserved white button mushrooms are poorer in major essential elements but also in toxic Hg, As, Ag, Cd, Sb, Tl or Pb which has been reported for unprocessed mushrooms. Conclusions. The relatively higher levels of Ag in some batches seem to be largely explained by the quality of the substrate used for mushrooms cultivation, while of Li, Rb, Cs, Cr, Al, U, V, As and Mn (in part also of Ba and Sr) largely by the quality of the marinade.
PL
Wprowadzenie. Grzyby jadalne to surowiec spożywczy bogaty w niezbędne pierwiastki metaliczne ale też możliwie źródło narażenia konsumenta na toksyczne metale i metaloidy. Niewiele jest danych na ten temat odnośnie grzybów przetworzonych kulinarnie czy wpływu procesów przetwarzania. Cel. Badania miały na celu poznanie podobieństw i różnic w składzie mineralnym (Hg, Li, Mg, Al, Co, Ni, Cu, As, Se, Rb, Sr, Ag, Cd, Cs, Sb, Tl, Pb, U, Ba, Cr, Zn, Mn and V) pieczarek (Agaricus bisporus) przetworzonych w warunkach przemysłowych. Materiał i metody. Pieczarki pochodziły z sześciu przetwórni. W analizie zastosowano sprawdzone metodyki analityczne łącznie z bieżącą kontrolą i zapewnieniem jakości wyników analizy. Pomiar wykonano technikami ICP-MS-DRC i CV-AAS. Współzależności pomiędzy 18 pierwiastkami i 10 partiami grzybów badano metodą analizy głównych składowych. Wyniki. Wykazano duże różnice w zawartości składników mineralnych w pieczarkach z różnych przetwórni. Konserwowe pieczarki są znacznie uboższe w główne pierwiastki niezbędne ale także w pierwiastki toksyczne takie jak Hg, As, Ag, Cd, Sb, Tl czy Pb w porównaniu z opublikowanymi danymi dla grzybów nieprzetworzonych. Wnioski. Względnie większą zawartość Ag w określonych partiach badanych konserwowych pieczarek wydaje się tłumaczyć jakość podłoża zastosowanego w uprawie grzybów a w przypadku Li, Rb, Cs. Cr, Al, U, V, As i Mn (po części też Ba i Sr) główny wpływ wydaje się mieć jakość użytej zalewy (marynaty).

Słowa kluczowe

Wydawca

-

Rocznik

Tom

70

Numer

1

Opis fizyczny

p.15-25,fig.,ref.

Twórcy

autor
  • Environmental Chemistry and Ecotoxicology, University of Gdansk, 80-308 Gdansk, Poland
autor
  • Department of Trace Element Analysis by Spectroscopy Method, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznan, Poland
  • Department of Trace Element Analysis by Spectroscopy Method, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznan, Poland
  • Environmental Chemistry and Ecotoxicology, University of Gdansk, 80-308 Gdansk, Poland
autor
  • Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming 650200, China
autor
  • Environmental Chemistry and Ecotoxicology, University of Gdansk, 63 Wita Stwosza Str., 80-308 Gdansk, Poland
  • Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, University of Cartagena, Zaragocilla Campus, 130015 Cartagena, Colombia
  • Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming 650200, China

Bibliografia

  • 1. Bressa G, Clima L, Costa P.: Bioaccumulation of Hg in the mushroom Pleurotus ostreatus. Ecotox. Env. Saf. 1988; 16: 85-89.
  • 2. Brzostowski A., Bielawski L., Orlikowska A., Plichta S., Falandysz J.: Instrumental analysis of metals profile in Poison Pax (Paxillus involutus) collected at two sites in Bory Tucholskie. Chem. Anal. (Warsaw). 2009;54: 907–919.
  • 3. Burton KS., Twyning RV.: Extending mushroom storage-life by combing modified atmosphere packaging and cooling. Acta Horticult. 1989;258: 565–572.
  • 4. Chatterjee S., Sarma MK., Deb U., Steinhauser G., Walther C., Gupta D.K.: Mushrooms: from nutrition to mycoremediation. Environ. Sci. Pollut. Res. 2017; 24: 19480-19493.
  • 5. Chudzińska M., Dębska A., Barałkiewicz D.: Method validation for determination of 13 elements in honey samples by ICP-MS. Accred. Qual. Assur. 2012; 17: 65-73.
  • 6. Coskuner Y., Özdemir Y.: Effect of canning processes on the elements content of cultivated mushrooms (Agaricus bisporus). Food Chem. 1997; 60: 559–562.
  • 7. Drewnowska M., Falandysz J.: Investigation on mineral composition and accumulation by popular edible mushroom Common Chanterelle (Cantharellus cibarius). Ecotoxicol. Environ. Saf. 2015; 113: 9–17.
  • 8. Drewnowska M., Falandysz J., Chudzińska M., Hanć A., Saba M., Barałkiewicz D.: Leaching of arsenic and sixteen metallic elements from Amanita fulva mushrooms after food processing. LWT - Food Sci. Technol. 2017: 84; 861-866.
  • 9. Drewnowska M., Hanć A., Barałkiewicz D., Falandysz J.: Pickling of chanterelle Cantharellus cibarius mushrooms highly reduce cadmium contamination. Environ. Sci. Pollut. Res. 2017;24: 21733–21738.
  • 10. EU. Commission Regulation (EC) No 629/2008 of 2: Amending Regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs. Off. J. European Union. 2008. (372008L173/6–9).
  • 11. Falandysz J.: Mercury accumulation of three Lactarius mushroom species. Food Chem. 2017; 214: 96-101.
  • 12. Falandysz J.: Mineral constituents in Leccinum scabrum from lowland locations in the central Europe and their relation to concentration in forest topsoil. J. Environ. Sci. Health B Pest. Food Contam. Agric. Wastes. 2018;53: 546-560.
  • 13. Falandysz J., Bona H., Danisiewicz D.: Silver uptake by Agaricus bisporus from an artificially enriched substrate. Z. Lebensm. Unters. Forsch. 1994; 199: 225-228.
  • 14. Falandysz J., Borovička J.: Macro and trace mineral constituents and radionuclides in mushrooms: health benefits and risks. Appl. Microbiol. Biotechnol. 2013; 97: 477-501.
  • 15. Falandysz J., Chudzińska M., Barałkiewicz D., Saba M., Wang Y., Zhang J.: Occurrence, variability and associations of trace metallic elements and arsenic in sclerotia of medicinal Wolfiporia extensa from polymetallic soils in Yunnan, China. Acta Pol. Pharm. - Drug Res. 2017; 74(5): 1379-1387.
  • 16. Falandysz J, Drewnowska M.: Cooking can decrease mercury contamination of a mushroom meal: Cantharellus cibarius and Amanita fulva. Environ. Sci. Pollut. Res. 2017; 24: 13352-13357.
  • 17. Falandysz, J., Drewnowska, M.: Distribution of mercury in Amanita fulva (Schaeff.) Secr. mushrooms: Accumulation, loss in cooking and dietary intake. Ecotoxicol Environ Saf 2015; 115: 49-54.
  • 18. Falandysz J., Mędyk M., Treu R.: Bio-concentration potential and associations of heavy metals in Amanita muscaria (L.) Lam. from northern regions of Poland. Environ. Sci. Poll. Res. 2018; 25: 25190–25206.
  • 19. Falandysz J., Rizal L.M.: Arsenic and its compounds in mushrooms: A review. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. 2016; 34(4): 217-232.
  • 20. Falandysz J., Sapkota A., Dryżałowska A., Mędyk M., Feng X.: Analysis of some metallic elements and metalloids composition and relationships in parasol mushroom Macrolepiota procera. Environ. Sci. Pollut. Res. 2017; 24: 15528–15537.
  • 21. Falandysz J., Szajek L.: Content of mercury in fungi Agaricus sp. from the region of Gdańsk (in Polish with summary in English). Bromatol. Chem. Toksykol. 1994; 27: 33-36.
  • 22. Falandysz J., Treu R.: Fungi and environmental pollution. J. Environ. Sci. Health B Pest. Food Contam. Agric. Wastes. 2017; 52(3): 147.
  • 23. Falandysz J., Zhang J., Wang Y., Saba M., Krasińska G., Wiejak A., Li T.: Evaluation of mercury contamination in fungi Boletus species from latosols, lateritic red earths, and red and yellow earths in the Circum-Pacific Mercuriferous Belt of Southwestern China. PLoS ONE 2015, 10(11). http://dx.doi.org/ 10.1371/journal.pone.0143608.
  • 24. Gałgowska M., Pietrzak-Fiećko R.: Pesticide contaminants in selected species of edible wild mushrooms from the north-eastern part of Poland. Environ. Sci. Health B. 2017; 52: 214-217.
  • 25. Gormley R.: Chill storage of mushrooms. J. Sci. Food Agric. 1975: 26(4): 401–411.
  • 26. Jarzyńska G., Falandysz J.: Selenium and 17 other largely essential and toxic metals in muscle and organ meats of Red Deer (Cervus elaphus) - Consequences to human health. Environ. Intern. 2011; 37 (5): 882-888.
  • 27. Kojta AK., Jarzyńska G., Falandysz J.: Mineral composition and heavy metals accumulation capacity of Bay Bolete’s (Xerocomus badius) fruiting bodies collected near a former gold and copper mining area. J. Geochem. Expl. 2012; 121: 76-82.
  • 28. Komorowicz I, Barałkiewicz D.: Arsenic and its speciation in water samples by high performance liquid chromatography inductively coupled plasma mass spectrometry—last decade review. Talanta, 2011; 84: 247-261.
  • 29. Lipka K., Saba M., Falandysz J.: Preferential accumulation of inorganic elements in Amanita muscaria from North-eastern Poland. J. Environ. Sci. Health A. 2018; 53(11): 968–974.
  • 30. Liu Y., Huang F., Yang H., Ibrahim S.A., Wang Y.F., Huang W.: Effects of preservation methods on amino acids and 5′-nucleotides of Agaricus bisporus mushrooms. Food Chem. 2014; 149: 221–225.
  • 31. Ludwicki J.K.: Mercury levels in selected food products (in Polish). Rocz Państw Zakl Hig. 1987;38(3): 237-243.
  • 32. Muszyńska B., Krakowska A., Sułkowska-Ziaja K., Opoka W., Reczyński W., Baś B.: In vitro cultures and fruiting bodies of culinary-medicinal Agaricus bisporus (white button mushroom) as a source of selected biologically-active elements. J. Food Sci. Technol. 2015;52: 7337–7344.
  • 33. Muszyńska B., Kala K., Rojowski J., Grzywacz A., Opoka W.: Composition and biological properties of Agaricus bisporus fruiting bodies – a review. Pol. J. Food Sci. 2017; 67(1): 173-181.
  • 34. Navarro MJ., Merino L., Francisco J., Gea FJ.: Evaluation of residue risk and toxicity of different treatments with diazinon insecticide applied to mushroom crops. J. Environ. Sci. Health B. 2017; 52: 218-221.
  • 35. Ralston N.V.C., Raymond L.J.: Mercury’s neurotoxicity is characterized by its disruption of selenium biochemistry. Biochim Biophys Acta Gen Subj. 2018; 1862 (11): 2405-2416.
  • 36. Rzymski P., Mleczek M., Siwulski M., Gąsecka M., Niedzielski P.: The risk of high mercury accumulation in edible mushrooms cultivated on contaminated substrates. J. Food Compos. Anal. 2016; 51: 55–60.
  • 37. Rzymski P., Mleczek M., Siwulski M., Jasińska A., Budka A., Niedzielski P., Kalač P., Gąsecka M., Budzyńska S.: Multielemental analysis of fruit bodies of three cultivated commercial Agaricus species. J. Food Comp. Anal. 2017; 59: 170–178.
  • 38. Sarikurkcu C., Tepe B., Kocak MS., Uren MC.: Metal concentration and antioxidant activity of edible mushrooms from Turkey. Food Chem. 2015; 175: 549–555.
  • 39. Skibniewska A., Smoczyński S.: Wpływ obróbki kulinarnej na poziom radiocezu w grzybach. Rocz Państw Zakl Hig 1999; 50: 157-162.
  • 40. Steinhauser G., Steinhauser V.: A simple and rapid method for reducing radiocesium concentrations in wild mushrooms (Cantharellus and Boletus) in the course of cooking. J. Food Prot. 2016; 79: 1995–1999.
  • 41. Širić I., Kasap A., Bedeković D., Falandysz J.: Lead, cadmium and mercury contents and bioaccumulation potential of wild edible saprophytic and ectomycorrhizal mushrooms, Croatia. J. Environ. Sci. Health B. 2017; 52(3): 156-165.
  • 42. Vetter J.: Chemical composition of fresh and conserved Agaricus bisporus mushroom. Eur. Food Res. Technol. 2003; 217: 10-12. This article is available in Open Access model and licensed under a Creative Commons Attribution-Non Commercial 3.0.Poland License (CC-BY-NC) available at: http://creativecommons.org/licenses/by-nc/3.0/pl/deed.en
  • 43. Vetter J., Hajdű Cs., Györfi J., Maszlavér P.: Mineral composition of the cultivated mushrooms Agaricus bisporus, Pleurotus ostreatus and Lentinula edodes. Acta Aliment. 2005; 34: 441-451.
  • 44. Wyrzykowska B., Szymczyk K., Ichihashi H., Falandysz J., Skwarzec B., Yamasaki S.: Application of ICP sector field MS and principal component analysis for studying interdependences among 23 trace elements in Polish beers. J. Agric. Food Chem. 2001; 49: 3425–3431.
  • 45. Źródłowski Z.: The influence of washing and peeling of mushrooms Agaricus bisporus on the level of heavy metal contamination. Polish J. Food Nutr. Sci. 1995; 45:26–33.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-fe7293d6-529d-45b9-a670-13a2de4497e6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.