PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 3 |

Tytuł artykułu

Coupling microbial fuel cells with electrocoagulation cells to form an integrated system for wastewater treatment

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Microbial fuel cells (MFCs) and electrocoagulation cells (ECCs) are two emerging technologies in the treatment of wastewater. The integration between MFCs and ECCs has not been reported yet. This work studied the ability to couple MFCs with an ECC to form an integrated system for wastewater treatment. Two types of wastewater were examined: synthetic wastewater containing a mixture of glucose and soluble starch, and real municipal wastewater. A series of MFCs could provide sufficient energy for the electrocoagulation process. The results showed that the removal efficiencies of COD, TDS, and TSS were 95.4%, 88.4%, and 93.8%, respectively, for synthetic wastewater, while these values were 83.7%, 57.5%, and 85.8%, respectively, for real wastewater. The energy harvested from the MFCs to ECCs when using synthetic wastewater was more than that harvested using real wastewater. The capital cost of the integrated system is high using MFCs and ECCs, but it will significantly reduce the operational cost compared to ECCs.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

28

Numer

3

Opis fizyczny

p.1909-1915,fig.,ref.

Twórcy

autor
  • Sanitary and Environmental Engineering Division, Faculty of Engineering, Cairo University, Giza, Egypt

Bibliografia

  • 1. Safwat S.M., Rozaik E. Growth Inhibition of Various Pathogenic Microorganisms Using Effective Microorganisms ( EM ). International Journal of Research and Engineering, 04 (12), 283, 2017.
  • 2. Ahmed S., Abdelhalim H., Rozaik E. Treatment of Primary Settled Wastewater Using Anaerobic Sequencing Batch Reactor Seeded with Activated EM. Civil and Environmental Research. Retrieved from http://www.iiste.org/Journals/index.php/CER/article/view/8124, 2013.
  • 3. Dargahi A., Mohammadi M., Karami A., Amirian F., Tabandeh L., Almasi A. Survey on Treatment Ability of Stabilization Pond as a Natural Treatment System in Oil Refinery Wastewaters. Polish Journal of Environmental Studies, 27 (1), 55, 2018.
  • 4. Safwat S.M. Performance of Moving Bed Biofilm Reactor Using Effective Microorganisms. Journal of Cleaner Production, 185, 723, 2018.
  • 5. Logan B.E., Hamelers B., Rozendal R., Schrder U., Keller J., Freguia S., Rabaey K. Microbial fuel cells: Methodology and technology. Environmental Science and Technology, 40 (17), 5181, 2006.
  • 6. Guo W., Song H., Zhou L., Sun J. Simultaneous removal of sulfanilamide and bioelectricity generation in two-chambered microbial fuel cells. Desalination and Water Treatment, 3994 (April), 1, 2016.
  • 7. Fan L., Xu D., Li C., Xue S. Molasses Wastewater Treatment by Microbial Fuel Cell with MnO₂ - Modified Cathode, 25 (6), 2016.
  • 8. Ahmed S., Rozaik E., Abdelhalim H. Effect of Configurations, Bacterial Adhesion, and Anode Surface Area on Performance of Microbial Fuel Cells Used for Treatment of Synthetic Wastewater. Water, Air, & Soil Pollution, 226 (9), 300, 2015.
  • 9. Yang Y., Sun G., Xu M. Microbial fuel cells come of age. Journal of Chemical Technology and Biotechnology, 86 (5), 625, 2011.
  • 10. Franks A.E., Nevin K.P. Microbial fuel cells, a current review. Energies, 3 (5), 899, 2010.
  • 11. Ahmed S., Rozaik E., Abdelhalim H. Performance of Single-Chamber Microbial Fuel Cells Using Different Carbohydrate-Rich Wastewaters and Different Inocula. Polish Journal of Environmental Studies, 25 (2), 503, 2016.
  • 12. Dewan A., Donovan C., Heo D., Beyenal H. Evaluating the performance of microbial fuel cells powering electronic devices. Journal of Power Sources, 195 (1), 90, 2010.
  • 13. Kuokkanen V., Kuokkanen T., Rämö J., Lassi U. Electrocoagulation treatment of peat bog drainage water containing humic substances. Water Research, 79, 79, 2015.
  • 14. Kuokkanen V., Kuokkanen T., Rämö J., Lassi U. Recent Applications of Electrocoagulation in Treatment of Water and Wastewater - A Review. Green and Sustainable Chemistry, 03 (02), 89, 2013.
  • 15. Hakizimana J.N., Gourich B., Chafi M., Stiriba Y., Vial C., Drogui P., Naja J. Electrocoagulation process in water treatment: A review of electrocoagulation modeling approaches. Desalination, 404, 1, 2017.
  • 16. Barışçı S., Turkay O. The performance of electrosynthesised ferrate (VI) ion, electrocoagulation and peroxi-electrocoagulation processes for degradation of cholesterol-lowering drug atorvastatin. Desalination and Water Treatment, 57 (53), 25561, 2016.
  • 17. Kabdaşlı I., Arslan-Alaton I., Ölmez-Hancı T., Tünay O. Electrocoagulation applications for industrial wastewaters: a critical review. Environmental Technology Reviews, 1 (1), 2, 2012.
  • 18. Zodi S., Potier O., Lapicque F., Leclerc J.P. Treatment of the industrial wastewaters by electrocoagulation: Optimization of coupled electrochemical and sedimentation processes. Desalination, 261 (1-2), 186, 2010.
  • 19. Wang H., Park J., Ren Z.J. Practical Energy Harvesting for Microbial Fuel Cells: A Review. Environmental science & technology, 49, 3267, 2015.
  • 20. Zhang B., He Z. Energy production, use and saving in a bioelectrochemical desalination system. RSC Advances, 2 (28), 10673, 2012.
  • 21. He Z., Minteer S.D., Angenent L. T. Electricity Generation from Artificial Wastewater Using an Upflow Microbial Fuel Cell Electricity Generation from Artificial Wastewater Using an Upflow Microbial Fuel Cell. Environmental Science & Technology, 39 (14), 5262, 2005.
  • 22. Rabaey K., Ossieur W., Verhaege M., Verstraete W. Continuous microbial fuel cells convert carbohydrates to electricity. Water Science and Technology, 52 (1-2), 515, 2005.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-fe62f529-023f-4ef6-a614-0895ca44e165
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.