PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 18 | 4 |

Tytuł artykułu

Immunohistochemical evaluation of hippocampal CA1 region astrocytes in 10 - day - old rats after monosodium glutamate treatment

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
High concentration of glutamate (Glu) is excitotoxic for nervous system structures. This may lead to glial reactivity ie. increased expression of glial fibrillary acidic protein (GFAP) and S100β protein, and also to hypertrophy and proliferation of cells which are determined by the presence of Ki-67 antigen. The aim of the study was to analyse the immunoreactivity of the GFAP, S100β and Ki-67 proteins in astrocytes of hippocampal CA1 region in young rats after administration of monosodium glutamate (MSG) at two doses: 2 g/kg b.w. (I group) and 4 g/kg b.w. (II group). In rats from I and II group morphologically altered astrocytes with the GFAP expression were observed in the SLM of the hippocampal CA1 region. The cells had eccentrically located nuclei and on the opposite site of the nuclei there were single or double, long and weakly branched processes. Moreover, in the SLM the increase of the number of GFAP and S100β immunopositive astrocytes and nuclei with Ki-67 expression, in contrary to control individuals, was observed. These results suggest the increased expression of the proteins in early reactions or hyperplasia which, together with cell hypertrophy, indicate late reactivity of astroglia in response to glutamate noxious effect.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

18

Numer

4

Opis fizyczny

p.767-774,fig.,ref.

Twórcy

autor
  • Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences, 20-950 Lublin, Poland
  • Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences, 20-950 Lublin, Poland
autor
  • Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences, 20-950 Lublin, Poland

Bibliografia

  • Barker AJ, Ullian EM (2010) Astrocytes and synaptic plasticity. Neuroscientist 16: 40-50. Beas-Zárate C, Pérez-Vega M, González-Burgos I (2002) Neonatal exposure to monosodium L-glutamate induces loss of neurons and cytoarchitectural alterations in hippocampal CA1 pyramidal neurons of adult rats. Brain Res 952: 275-281.
  • Castillo J, Dávalos A, Naveiro J, Noya M (1996) Neuroexcitatory amino acids and their relation to infarct size and neurological deficit in ischemic stroke. Stroke 27: 1060-1065.
  • Donato R, Sorci G, Riuzzi F, Arcuri C, Bianchi R, Brozzi F, Tubaro C, Giambanco I (2009) S100B’s double life: intracellular regulator and extracellular signal. Biochim Biophys Acta 1793: 1008-1022.
  • Dyck RH, Bogoch II, Marks A, Melvin NR, Teskey GC (2002) Enhanced epileptogenesis in S100B knockout mice. Brain Res Mol Brain Res 106: 22-29.
  • El-Falougy H, Benuska J (2006) History, anatomical nomenclature, comparative anatomy and functions of the hippocampal formation. Bratisl Lek Listy 107: 103-106.
  • Eng LF, Ghirnikar RS, Lee YL (2000) Glial fibrillary acidic protein: GFAP-thirty-one years (1969-2000). Neurochem Res 25: 1439-1451.
  • Griffin WS, Yeralan O, Sheng JG, Boop FA, Mrak RE, Rovnaghi CR, Burnett BA, Feoktistova A, Van Eldik LJ (1995) Overexpression of the neurotrophic cytokine S100β in human temporal lobe epilepsy. J Neurochem 65: 228-233.
  • Hawkins RA (2009) The blood-brain barrier and glutamate. Am J Clin Nutr 90: 867S-874S.
  • Hawrylak N, Chang FL, Greenough WT (1993) Astrocytic and synaptic response to kindling in hippocampal subfield CA1. II. Synaptogenesis and astrocytic process increases to in vivo kindling. Brain Res 603: 309-316.
  • Kesner RP, Goodrich-Hunsaker NJ (2010) Developing an animal model of human amnesia: the role of the hippocampus. Neuropsychologia 48: 2290-2302.
  • Kimelberg HK (2004) The problem of astrocyte identity. Neurochem Int 45: 191-202.
  • Korzhevskii DE, Otellin VA, Grigor’ev IP, Kostkin VB, Polenov SA, Lentsman MV, Balestrino M (2005) Structural organization of astrocytes in the rat hippocampus in the post-ischemic period. Neurosci Behav Physiol 35: 389-392.
  • Kubo T, Kohira R, Okano T, Ishikawa K (1993) Neonatal glutamate can destroy the hippocampal CA1 structure and impair discrimination learning in rats. Brain Res 616: 311-314.
  • Li L, Lundkvist A, Andersson D, Wilhelmsson U, Nagai N, Pardo AC, Nodin C, Ståhlberg A, Aprico K, Larsson K, Yabe T, Moons L, Fotheringham A, Davies I, Carmeliet P, Schwartz JP, Pekna M, Kubista M, Blomstrand F, Maragakis N, Nilsson M, Pekny M (2008) Protective role of reactive astrocytes in brain ischemia. J Cereb Blood Flow Metab 28: 468-481.
  • López-Pérez SJ, Ureña-Guerrero ME, Morales-Villagrán A (2010) Monosodium glutamate neonatal treatment as a seizure and excitotoxic model. Brain Res 1317: 246-256.
  • Lujàn R, Shigemoto R, López-Bendito G (2005) Glutamate and GABA receptor signalling in the developing brain. Neuroscience 130: 567-580.
  • Marlatt MW, Lucassen PJ (2010) Neurogenesis and Alzheimer’s disease: biology and pathophysiology in mice and men. Curr Alzheimer Res 7: 113-125.
  • Martínez-Contreras A, Huerta M, Lopez-Perez S, Garcta-Estrada J, Luquín S, Beas Zárate C (2002) Astrocytic and microglia cells reactivity induced by neonatal administration of glutamate in cerebral cortex of the adult rats. J Neurosci Res 67: 200-210.
  • Mattson MP (2003) Excitotoxic and excitoprotective mechanisms: abundant targets for the prevention and treatment of neurodegenerative disorders. Neuromolecular Med 3: 65-94.
  • McAdory BS, Van Eldik LJ, Norden JJ (1998) S100B, a neurotropic protein that modulates neuronal protein phosphorylation, is upregulated during lesion-induced collateral sprouting and reactive synaptogenesis. Brain Res 813: 211-217.
  • Meldrum BS (2000) Glutamate as a neurotransmitter in the brain: review of physiology and pathology. J Nutr 130(4S Suppl): 1007S-1015S.
  • Middeldorp J, Hol EM (2011) GFAP in health and disease. Prog Neurobiol 93: 421-443.
  • Montgomery DL (1994) Astrocytes: form, functions, and roles in disease. Vet Pathol 31: 145-167.
  • Morimoto K, Fahnestock M, Racine RJ (2004) Kindling and status epilepticus models of epilepsy: rewiring the brain. Prog Neurobiol 73: 1-60.
  • Norenberg MD (1994) Astrocyte responses to CNS injury. J Neuropathol Exp Neurol 53: 213-220.
  • Norton WT, Aquino DA, Hozumi I, Chiu FC, Brosnan CF (1992) Quantitative aspects of reactive gliosis: a review. Neurochem Res 17: 877-885.
  • Platt SR (2007) The role of glutamate in central nervous system health and disease – a review. Vet J 173: 278-286.
  • Rothermundt M, Peters M, Prehn JH, Arolt V (2003) S100B in brain damage and neurodegeneration. Microsc Res Tech 60: 614-632.
  • Sakatani S, Seto-Ohshima A, Shinohara Y, Yamamoto Y, Yamamoto H, Itohara S, Hirase H (2008) Neural-activity-dependent release of S100B from astrocytes enhances kainate-induced gamma oscillations in vivo. J Neurosci 28: 10928-10936.
  • Schmidt-Kastner R, Freund TF (1991) Selective vulnerability of the hippocampus in brain ischemia. Neuroscience 40: 599-636.
  • Scholzen T, Gerdes J (2000) The Ki-67 protein: from the known and the unknown. J Cell Physiol 182: 311-322.
  • Schwartzkroin PA (1994) Role of the hippocampus in epilepsy. Hippocampus 4: 239-242.
  • Sofroniew MV (2009) Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 32: 638-647.
  • Takasaki Y (1978) Studies on brain lesion by administration of monosodium L-glutamate to mice. I. Brain lesions in infant mice caused by administration of monosodium L-glutamate. Toxicology 9: 293-305.
  • Tramontina F, Tramontina AC, Souza DF, Leite MC, Gottfried C, Souza DO, Wofchuk ST, Goncalves CA (2006) Glutamate uptake is stimulated by extracellular S100B in hippocampal astrocytes. Cell Mol Neurobiol 26: 81-86.
  • Yasuda Y, Tateishi N, Shimoda T, Satoh S, Ogitani E, Fujita S (2004) Relationship between S100beta and GFAP expression in astrocytes during infarction and glial scar formation after mild transient ischemia. Brain Res 1021: 20-31.
  • Yuan H, Zheng JC, Liu P, Zhang SF, Xu JY, Bai LM (2007) Pathogenesis of Parkinson’s disease: oxidative stress, environmental impact factors and inflammatory processes. Neurosci Bull 23: 125-130.
  • Zhou J, Sutherland ML (2004) Glutamate transporter cluster formation in astrocytic processes regulates glutamate uptake activity. J Neurosci 24: 6301-6306.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-fd556d6d-e7f6-4acd-a1c5-ad7965883665
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.