PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 33 | 4 |

Tytuł artykułu

Anatomical and physiological characteristics relating to ionic relations in some salt tolerant grasses from the Salt Range, Pakistan

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Populations of three salt tolerant forage grasses (Cynodon dactylon, Imperata cylindrica, and Sporobolus arabicus) were collected from the salt-affected soils of the Salt Range and normal non-saline soils of the Faisalabad region to assess their mechanism of adaptation to saline stress by determining ion relations and some specific anatomical modifications. The population of S. arabicus from the Salt Range showed increased growth (root and shoot length, and root and shoot dry weights) under saline conditions. Salt tolerance in this species was related to structural modifications such as increased area of root, stem, leaf blade, and leaf sheath for toxic ion accumulation, increased vesicular hair density in leaves and aerenchyma formation in leaf sheath for ion exclusion. Uptake of toxic ions was high in the Salt Range population of C. dactylon and salt tolerance was related to ion exclusion through specific leaf structural modifications such as vesicular hairs. Salt tolerance in the Salt Range population of I. cylindrica was mainly associated with restricted uptake of toxic Na⁺ and Cl⁻ at root level, and accumulation of toxic ions via increased succulence in leaf blades and leaf sheaths in addition to some excretion of toxic ions through leaf sheath aerenchyma.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

33

Numer

4

Opis fizyczny

p.1399-1409,fig.,ref.

Twórcy

autor
  • Department of Botany, University of Agriculture, Faisalabad, Pakistan
autor
  • Department of Botany and Microbiology, King Saud University, Riyadh, Saudi Arabia
autor
  • Department of Botany, University of Agriculture, Faisalabad, Pakistan

Bibliografia

  • Ashraf M (1994) Breeding for salinity tolerance in plants. Crit Rev Plant Sci 13:17–42
  • Ashraf M (1997) Changes in soluble carbohydrates and soluble proteins in three arid-zone grass species under salt stress. J Trop Agric 74:234–237
  • Ashraf M, Ahmad H (1995) Response of three arid zone grasses to salt and waterlogging. Arid Soil Res Rehabil 9:137–154
  • Cheng KT, Chou CH (1997) Ecotypic variation of Imperata cylindrica populations in Taiwan. I. Morphological and molecular evidences. Bot Bull Acad Sin 38:215–223
  • de Lacerda CF, Cambraia J, Oliva MA, Ruiz HA (2005) Changes in growth and in solute concentrations in sorghum leaves and roots during salt stress recovery. Environ Exp Bot 54:69–76
  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963
  • Gulzar S, Khan MA, Ungar IA (2003) Effects of salinity on growth, ionic content, and plant–water status of Aeluropus lagopoides. Commun Soil Sci Plant Anal 34:1657–1668
  • Hagemeyer J (1997) Salt. In: Prasard MNV (ed) Plant ecophysiology. Wiley, Toronto, ON, pp 173–206
  • Hameed M, Ashraf M (2008) Physiological and biochemical adaptations of Cynodon dactylon (L.) Pers. from the Salt Range (Pakistan) to salinity stress. Flora 203:683–694
  • Hameed M, Ashraf M, Naz N (2009) Anatomical adaptations to salinity in cogon grass [Imperata cylindrica (L.) Raeuschel] from the Salt Range, Pakistan. Plant Soil 322:229–238
  • Hoagland DR, Arnon DI (1950) The water culture method for growing plants without soil. Circular No. 347. University of California Agricultural Experimental Station, Berkeley, CA, pp 1–39
  • Khan MA, Gul B, Weber DJ (2000) Germination responses to Salicornia rubra to temperature and salinity. J Arid Environ 45:207–221
  • Mahmood S, Athar HR (2003) Germination and growth of Panicum turgidum provenance under saline conditions. Pak J Biol Sci 6:164–166
  • Marcum KB (1999) Salinity tolerance mechanisms of grasses in the subfamily Chloridoideae. Crop Sci 39:1153–1160
  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250
  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681
  • Munns R, Greenway H, Kirst GO (1983) Halotolerant eukaryotes. In: Lange OL, Nobel PS, Osmond CB, Ziegler H, Ziegler H (eds) Encyclopaedia of plant physiology, vol 12C: Physiological plant ecology III. Springer, Berlin, pp 59–135
  • Naz N, Hameed M, Wahid A, Arshad M, Ahmad MSA (2009) Patterns of ion excretion and survival in two stoloniferous arid zone grasses. Physiol Plant 135:185–195
  • Oross WJ, Thomson WW (1982) The ultrastructure of the salt glands of Cynodon and Distichlis (Poaceae). Am J Bot 69:939–949
  • Ramadan T, Flowers T (2004) Effects of salinity and benzyl adenine on development and function of microhairs of Zea mays L. Planta 219:639–648
  • Ruzin SE (1999) Plant microtechnique and microscopy. Oxford University Press, New York
  • Short DC, Colmer TD (1999) Salt tolerance in the halophyte Halosarcia pergranulata subsp. Pergranulata. Ann Bot 83:207–213
  • Somaru R, Naidoo Y, Naidoo G (2002) Morphology and ultrastructure of the leaf salt glands of Odyssea paucinervis (Stapf) (Poaceae). Flora 197:67–75
  • Steel RGD, Torrie JH, Dickie DA (1997) Principles and procedures of statistics—a biometric approach, 3rd edn. McGraw-Hill Publishing Company, Toronto
  • Wolf B (1982) An improved universal extracting solution and its use for diagnosing soil fertility. Commun Soil Sci Plant Anal 13:1005–1033
  • Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445

Uwagi

PL
Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-fc26e26d-b08b-4e77-88fc-24b62e56d7c6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.