PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2017 | 161 | 11 |

Tytuł artykułu

Zastosowanie techniki bliskiej podczerwieni do obliczania Siedliskowego Indeksu Glebowego

Treść / Zawartość

Warianty tytułu

EN
Applying the near-infrared spectroscopy to calculate the Soil Trophic Index

Języki publikacji

PL

Abstrakty

EN
The research covered the application of near−infrared spectroscopy (NIR) to evaluate selected properties of forest soils, necessary to calculate the Soil Trophic Index (SIG). We analyzed 50 samples from 15 study plots located in the Miechów Forest Districts (S Poland). Five plots were established per each variant of the site conditions: upland deciduous forests (Lwyż), upland mixed deciduous forests (LMwyż) and upland mixed coniferous forests (BMwyż). On each plot soil pit was dug out and samples were taken from organic and three mineral (0−10 cm, 10−40 cm and 40−150 cm) horizons. NIR measurements were performed using Antharis II FT spectrometer to assess the following properties of forest soil: the content of organic carbon (Corg), total nitrogen (Nt), C:N ratio, the share of fine ø<0.02 mm) fraction, the content of base cations (S) and total acidity (Hh). Based on the 30 spectrums and the identified properties of soils, the calibration model was developed. The validation of the model was performed on independent set of 20 samples. Next, the SIG values were calculated on the basis of laboratory measurements and compared with the values obtained with NIR. Very good calibration results were observed for almost all soil properties (fig. 1, tab.). The highest correlation coefficient was obtained for the C:N ratio. During the validation, the nitrogen content was well estimated, as evidenced by the highest R²W values (tab.). The content of Corg, soil particles ø<0.02 mm and S were also relatively well estimated. The results suggest that the NIR technique can be successfully applied to evaluate the soil properties necessary to calculate SIG. The calculations are made at a much lower cost and in a very rapid way compared to laboratory methods.

Wydawca

-

Czasopismo

Rocznik

Tom

161

Numer

11

Opis fizyczny

s.935-939,rys.,tab.,bibliogr.

Twórcy

autor
  • Zakład Gleboznawstwa Leśnego, Uniwersytet Rolniczy w Krakowie, al.29 Listopada 46, 31-425 Kraków
autor
  • Zakład Gleboznawstwa Leśnego, Uniwersytet Rolniczy w Krakowie, al.29 Listopada 46, 31-425 Kraków
autor
  • Zakład Gleboznawstwa Leśnego, Uniwersytet Rolniczy w Krakowie, al.29 Listopada 46, 31-425 Kraków

Bibliografia

  • Ben-Dor E., Banin A. 1995. Near-infrared analysis as a rapid method to simultaneously evaluate several soil properties. Soil Science Society of American Journal 50 (2): 364-372.
  • Brożek S. 2007. Liczbowa wycena „jakości” gleb – narzędzie w diagnozowaniu siedlisk leśnych. Sylwan 151 (2): 35-42.
  • Brożek S. 2011. Gleby i siedliska leśne nizin i wyżyn Polski – ujęcie klasyczne i numeryczne. Roczniki Gleboznawcze 62 (4): 7-15.
  • Brożek S., Gruba P., Lasota J., Zwydak M., Wanic T., Pacanowski P., Błońska E., Różański W. 2010. Opraco-wanie indeksów jakości gleb dla naturalnych siedlisk leśnych nizin i wyżyn Polski i ich zastosowanie w gospodarce leśnej jako narzędzia w zachowaniu i odtwarzaniu różnorodności lasów. Studia i Materiały CEPL 25: 292-302.
  • Chang C. W., Laird D. A., Mausbach M. J., Hurburgh C. R. 2001. Near-infrared reflectance spectroscopy-principal components regression analyses of soil properties. Soil Science Society of America Journal 65 (2): 480-490.
  • Chodak M., Niklińska M., Beese F. 2007. Near-infrared spectroscopy for analysis of chemical and microbiological properties of forest soil organic horizons in a heavy-metal-polluted area. Biology Fertility of Soils 44: 171-180.
  • Dematte J. A. M., Horak-Terra I., Beirigo R. M., Terra F. S., Marques K. P. P., Fongaro C. T., Silva A. C., Vidal-Torrado P. 2017. Genesis and properties of wetland soils by VIS-NIR-SWIR as a technique for environmental monitoring. Journal of Environmental Management 197: 50-62.
  • Instrukcja urządzania lasu. 2012. Część II. Instrukcja wyróżniania i kartowania w Lasach Państwowych typów sie-dliskowych lasu oraz zbiorowisk roślinnych. CILP, Warszawa.
  • Islam K., Singh B., McBratney A. 2003. Simultaneous estimation of several soil properties by ultra-violet, visible, and near-infrared reflectance spectroscopy. Australian Journal of Soil Research 41: 1101-1114.
  • Kania M., Gruba P. 2016. Estimation of selected properties of forest soils using near-infrared spectroscopy (NIR). Soil Science Annual 67 (1): 32-36.
  • Lachenal G., Pirre A., Poisson N. 1996. FT-NIR Spectroscopy: Trends and Application to the Kinetic Study of Epoxy/Triamine System (Comparison with DSC and SEC Results). Can. J. Soil Sci. 82: 413-422.
  • Pinheiro E. F. M., Marcos B. M. C., Clingensmith C. M., Grunwald S., Vasques G. M. 2017. Prediction of Soil Physical and Chemical Properties by Visible and Near-Infrared Diffuse Reflectance Spectroscopy in the Central Amazon. Remote Sensing 9 (4): 293.
  • Shepherd K. D., Walsh M. G. 2002. Development of Reflectance Spectral Libraries for Characterization of Soil Properties. Soil Science Society of America Journal 66: 988-998.
  • Stenberg B., Rossel R. A. V., Mouazen A. M., Wetterlind J. 2010. Visible and Near Infrared Spectroscopy in Soil Science. Advances in Agronomy 107: 163-215

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-fbf142b6-e480-4818-8ca5-7250d8970f49
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.