PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 58 | 1 |

Tytuł artykułu

Morphological and biochemical responses to gibberellic acid in Magnolia × ‘Spectrum’ in vitro

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The total soluble sugar content and antioxidant enzyme activities were studied for the first time during axillary shoot formation in Magnolia × ‘Spectrum’ in vitro in response to BAP (0.3 mg lˉ¹), different levels of gibberellic acid (GA3; 0.0, 0.1, 0.5, 1.0 mg lˉ¹), sucrose (20 and 30 g lˉ¹) and nitrogen salts (KNO3/NH4NO3; 100/100% and 75/50% relative to MS medium). Among various GA3 and sucrose/nitrogen salts ratios, the most effective axillary multiplication (5.9 shoots/explant) and leaf formation (25.7 leaves per multiplied clumps) were obtained after addition of GA3 at 0.1 mg lˉ¹ to a BAP medium containing 20 g lˉ¹ sucrose and reduced levels of nitrogen salts (75% KNO3 and 50% NH4NO3). The addition of GA3 to the BAP medium enhanced shoot formation by 36% and leaf formation by 27%. The highest shoot formation capacity of M. × ‘Spectrum’ in vitro coincided with enhanced levels of soluble sugar and peroxidase (POD) activity. Increasing GA3 concentration from 0.1 to 1.0 mg lˉ¹ in the above medium resulted in inhibition of shoot and leaf formation and a decrease in the soluble sugar content. The influence of GA3 on the activities of catalase (CAT) and POD depended on its concentration and the levels of sucrose and nitrogen salts in the medium. The highest increase in CAT and POD activities, that coincided with the enhanced shoot formation capacity of M. × ‘Spectrum’ in vitro, was observed after addition of GA3 to the medium containing high levels of sucrose and nitrogen salts.

Wydawca

-

Rocznik

Tom

58

Numer

1

Opis fizyczny

p.103-111,fig.,ref.

Twórcy

autor
  • Research Institute of Horticulture, Konstytucji 3 Maja 1/3, Skierniewice, Poland
autor
  • The F. Gorski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, Krakow, Poland
  • Research Institute of Horticulture, Konstytucji 3 Maja 1/3, Skierniewice, Poland

Bibliografia

  • AEBI H. 1984. Catalase in vitro. Methods in Enzymology 105: 121–125.
  • BARBIER FF, LUNN JE, and BEVERIDGE CA. 2015. Ready, steady, go! A sugar hit starts the race to shoot branching. Current Opinion in Plant Biology 25: 39–45.
  • BIEDERMANN IEG. 1987. Factors affecting establishment and development of magnolia hybrids in vitro. Acta Horticulturae 212: 625–629.
  • BERETTA D, and ECCHER T. 1987. Determination of optimal level of BAP, GA3 and IAA in micropropagation of Camellia by an orthogonal composite design. Acta Horticulturae 212: 151–154.
  • CANDAU R, AVALOS J, and CERDÁ-OLMEDO E. 1992. Regulation of gibberellins biosynthesis in Gibberella fujikuroi. Plant Physiology 100: 1184–1188.
  • CHAE WS, SERPE MD, ANDERSON JV, GESH RW, and HORVATH DP. 2006. Sugars, hormones, and environment affect the dormancy status in underground buds of leafy spurge (Euphorbia esula). Weed Science 54: 59–68.
  • CHAKRABARTI N, and MUKHARJI S. 2003. Alleviation of NaCl stress by pretreatment of phytohormones in Vigna radiata. Biologia Plantarum 46: 589–594.
  • CHEN WS, LIU HY, LIU ZH, YANG L, and CHEN WH. 1994. Gibberellin and temperature influence carbohydrate content and flowering in Phalaenopsis. Physiologia Plantarum 90: 391–395.
  • CHOUBANE D, RABOT A, MORTREAU E, LEGOURRIEREC J, PERON T, FOUCHER F, AHCENE Y, PELLESCHI-TRAVIER S, LEDUC N, HAMAMA L, and SAKR S. 2012. Photocontrol of bud burst involves gibberellins biosynthesis in Rosa sp. Journal of Plant Physiology 169: 1271–1280.
  • DODSWORTH SA. 2009. A diverse and intricate signaling network regulates stem cell fate in the shoot apical meristem. Developmental Biology 336: 1–9.
  • DUBOIS M, GILLES KA, HAMILTON JK, ROBERTS PA, and SMITH F. 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28: 350–356.
  • DUN EA, DE SAINT GERMAIN A, RAMEAU C, and BEVERIDGE CA. 2012. Antagonistic action of strigolactone and cytokinin in bud outgrowth control. Plant Physiology 158: 487–498.
  • FRAGUAS CB, PASQUAL M, DUTRA LF, and CAZETTA JO. 2004. Micropropagation of fig (Ficus carica L.) ‘Roxo de Valinhos’ plants. In Vitro Cellular and Developmental Biology-Plant 40: 471–474.
  • GABRYSZEWSKA E. 2009. Rola regulatorów wzrostu, węglowodanów, soli mineralnych, glutationu i temperatury w rozmnażaniu in vitro piwonii chińskiej. Zeszyty Naukowe Instytutu Sadownictwa i Kwiaciarstwa, Monografie i rozprawy. (in Polish with English abstract).
  • GABRYSZEWSKA E. 2011. Effect of various levels of sucrose, nitrogen salts and temperature on the growth and development of Syringa vulgaris L. shoots in vitro. Journal of Fruit and Ornamental Plant Research 19: 133–148.
  • GABRYSZEWSKA E. 2015. Effect of different sucrose and nitrogen salts levels in the medium and temperature on in vitro propagation of Helleborus niger L. Acta Arobotanica 68: 161–171.
  • GIBSON SI. 2003. Sugar and phytohormone response pathways: navigating a signaling network. Journal of Experimental Botany 55: 253–264.
  • HORVATH DP, CHAO WS, and ANDERSON JV. 2002. Molecular analysis of signals controlling dormancy and growth in underground adventitious buds of leafy spurge (Euphorbia esula L.). Plant Physiology 128: 1439–1446.
  • IQBAL N, NAZAR R, IQBAL M, KHAN R, MASOOD A, and KHAN NA. 2011. Role of gibberellins in regulation of source-sink relations under optimal and limiting environmental conditions. Current Science 100: 998–1007.
  • KAMENICKA A, and LANAKOVA M. 2000. Effect of medium composition and type of vessel closure on axillary shoot production of magnolia in vitro. Acta Physiologiae Plantarum 22: 129–134.
  • KHAVARI-NEJAD RA, NAJAFI F, and RANJBARI M. 2013. The effects of GA3 application on growth, lipid peroxidation, antioxidant enzymes activities, and sugars levels of cadmium stressed tomato (Lycopersicon esculentum Mill. Cv. CH) plants. Romanian Journal of Biology Plant Biology 58: 51–60.
  • LI Q, LI CH, YU X, and SHI Q. 2011. Gibberellin A3 pretreatment incresed antioxidative capacity of cucumber radicles and hypocotyls under suboptimal temperature. African Journal of Agricultural Research 6: 4091–4098.
  • LŰCK H. 1962. Methoden der enzymatischen Analyse. (Ed. H.U. Bergmeyer) Verlag Chemie, GmbH Weinheim 895–897.
  • MITROVIĆ A, JANOŠEVIĆ D, BUDIMIR S, and PRISTOV JB. 2012. Changes in antioxidative enzymes activities during Tacitus bellus direct shoot organogenesis. Biologia Plantarum 56: 357–361.
  • MURASHIGE T, and SKOOG F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum 15: 473–497.
  • MÝTINOVÁ Z, MOTYKA V, HAISEL D, LUBOVSKÁ Z, TRÁVNIČKOVÁ A, DOBREV P, HOLIK J, and WILHELMOVÁ N. 2011. Antioxidant enzymatic protection during tobacco leaf ageing is affected by cytokinin depletion. Plant Growth Regulation 65: 23–34.
  • PARRIS JK, TOUCHEL DH, RANNEY TG, and ADELBERG J. 2012. Basal salt composition, cytokinins, and phenolic binding agents influence in vitro growth and ex vitro establishment of Magnolia ‘Ann’. HortScience 47: 1625–1629.
  • PAWŁOWSKA B. 2011. The effect of BAP and GA3 on the shoot multiplication of in vitro cultures of Polish wild roses. Folia Horticulturae 23(2): 145–149.
  • PERATA P, MATSUKURA C, VERNIERI P, and YAMAGUCHI J. 1997. Sugar repression of a gibberellin-dependent signaling pathway in barley embryos. Plant Cell 9: 2197–2208.
  • PODWYSZYŃSKA M, WOJTANIA A, and GABRYSZEWSKA E. 2000. Application of m-topolin for plant propagation. Zeszyty Naukowe Instytutu Sadownictwa i Kwiaciarstwa 7: 173–180. (in Polish with English abstract).
  • SAHOO Y, and CHAND PK. 1998. Micropropagation of Vitex negundo L., a woody aromatic medicinal shrub, through high-frequency axillary shoot proliferation. Plant Cell Reports 18: 301–307.
  • SOKOLOV RS, ATANASSOVA BY, and IAKIMOVA ET. 2014. Physiological response of in vitro cultured Magnolia sp. to nutrient medium composition. Journal of Horticultural Research 22: 49–61.
  • SUJATHA M, and REDDY TP. 1998. Differential cytokinin effects on the stimulation of in vitro shoot proliferation from meristematic explants of castor (Ricinus communis L.). Plant Cell Reports 17: 561–566.
  • TANG W, and NEWTON RJ. 2005. Peroxidase and catalase activities are involved in direct adventitious shoot formation induced by thidiazuron in eastern white pine (Pinus strobus L.) zygotic embryos. Plant Physiology and Biochemistry 43: 760–769.
  • TUNA AL, KAYA C, DIKILITAS M, and HIGGS D. 2008. The combined effects od gibberellic acid and salinity on same antioxidant enzyme activities, plant growth parameters and nutritional status in maize plants. Environmental and Experimental Botany 62: 1–9.
  • WOJTANIA A, GABRYSZEWSKA E, and PODWYSZYŃSKA M. 2011. The effect of growth regulators and sucrose concentration on in vitro propagation of Camellia japonica L. Propagation of Ornamental Plants 11: 177–183.
  • WOJTANIA A, and SKRZYPEK E. 2014. Effects of cytokinins on antioxidant enzymes in in vitro grown shoots of Pelargonium hortorum L. H. Bayley. Acta Agrobotanica 67: 33–42.
  • WOJTANIA A, SKRZYPEK E, and GABRYSZEWSKA E. 2015. Effect of cytokinin, sucrose and nitrogen salts concentrations on the growth and development and phenolics content in Magnolia × soulangiana ‘Coates’ shoots in vitro. Acta Scientiarum Polonorum- Hortorum Cultus 14: 51–62.
  • ZHANG X, WU Z, and HUANG C. 2008. Effects of gibberellins on in vitro shoot bud regeneration of Arabidopsis. African Journal of Biotechnology 7: 4159–4163.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-fb92b77b-05b6-474b-997e-a16eea27225d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.