PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 3 |

Tytuł artykułu

Varied responses of growth and mineral elements concentrations in Pennisetum ericanum and Festuca arundinacea under Cd/Cu addition

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
An experiment was carried out to compare cadmium and copper absorption and mineral nutrition accumulation in pennisetum and tall fescue in order to select an appropriate grass to remediate Cd/Cu-contaminated soil and explore their detoxification mechanisms of contamination by mineral elements. The biomass remained constant in tall fescue under each Cd addition level and increased in pennisetum until Cu reached 500 μM, whereas they dramatically decreased as the Cu or Cd solution increased, which was concurrent with quadratic regression model analysis. The Cd/Cu concentrations in tall fescue were mostly accumulated in the roots and were much higher than those in pennisetum. The extracted amount of Cd in the shoots and the total Cu concentrations of pennisetum were higher than the corresponding values in tall fescue at every Cd/Cu addition level. Negative correlations were observed between Cd and shoot Ca, Cu, K, Mg, and Zn, and root Cu and Na of tall fescue and the root K of pennisetum. The Cu concentration was negatively correlated with K and positively correlated with Na in tall fescue and pennisetum under the Cu treatments. As the Cd/Cu concentration in solution increased, K/Na values were significantly decreased in the roots of tall fescue under Cu stress and pennisetum under Cd/Cu stress, whereas they increased in the roots of tall fescue under Cd addition. In summary, pennisetum exhibited the greater biomass and Cd/Cu extraction; indicating it as a candidate energy grass for phytoextraction. The adjustment capacity of grass for K and Na might relate to the tolerance to Cd/Cu.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

28

Numer

3

Opis fizyczny

p.1385-1396,fig.,ref.

Twórcy

autor
  • Department of Grassland Science, College of Animal Science and Technology, China Agricultural University, Beijing, China
autor
  • Department of Grassland Science, College of Animal Science and Technology, China Agricultural University, Beijing, China
autor
  • Department of Grassland Science, College of Animal Science and Technology, China Agricultural University, Beijing, China
autor
  • Beijing Sure Academy of Biosciences, Beijing, China
autor
  • Department of Grassland Science, College of Animal Science and Technology, China Agricultural University, Beijing, China

Bibliografia

  • 1. NRIAGU J.O., PACYNA J.M. Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 333, 134, 1988.
  • 2. GARBUIO F.J., HOWARD J.L., dos SANTOS L.M. Impact of human activities on soil contamination. Applied & Environ Soil Science 2012, 1, 2012.
  • 3. KIRKHAM M.B. Cadmium in plants on polluted soils: Effects of soil factors, hyperaccumulation, and amendments. Geoderma 137, 19, 2006.
  • 4. INMACULADA Y. Copper in plants: acquisition, transport and interactions. Funct. Plant Biol. 36, 409, 2009.
  • 5. WUANA R.A., OKIEIMEN F.E. Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation. ISRN Ecology 2011, 2090, 2011.
  • 6. KABATA-PENDIAS A. Trace elements in soils and plants. 4th edn, Boca Raton, 2011.
  • 7. ALI H., KHAN E., SAJAD M.A. Phytoremediation of heavy metals-concepts and applications. Chemosphere 91, 869, 2013.
  • 8. MARQUES A.P.G.C., RANGEL A.O.S.S., CASTRO P.M.L. Remediation of heavy metal contaminated soils: phytoremediation as a potentially promising clean-up technology. Crit. Rev. Env. Sci. Tec. 39, 622, 2009.
  • 9. CUNNINGHAM S.D., OW D.W. Promises and prospects of phytoremediation. Plant Physiol. 110, 715, 1996.
  • 10. RASKIN I., KUMAR P., DUSHENKOV S., SALT D. Bioconcentration of heavy metals by plants. Curr. Opin. Biotech. 5, 285, 1994.
  • 11. BARBOSA B., BOLÉO S., SIDELLA S., COSTA J., DUARTE M.P., MENDES B., CONSENTIN S.L., FERNAND A.L. Phytoremediation of heavy metal-contaminated soils using the perennial energy crops Miscanthus spp. and Arundo donax L. BioEnerg. Res. 8, 1500, 2015.
  • 12. NSANGANWIMANA F., MARCHAND L., DOUAY F. MENCH M. Arundo donax L. a candidate for phytomanaging water and soils contaminated by trace elements and producing plant-based feedstock. a review. Int. J. Phytoremediat. 16, 982, 2014.
  • 13. VALIPOUR A., AHN Y.H. Constructed wetlands as sustainable ecotechnologies in decentralization practices: a review. Environ. Sci. Pollut. R. 23, 180, 2015.
  • 14. LICHT L.A., ISEBRANDS J.G. Linking phytoremediated pollutant removal to biomass economic opportunities. Biomass Bioenerg. 28, 203, 2005.
  • 15. WITTERS N., MENDELSOHN R.O., VAN SLYCKEN S., WEYENS N., SCHREURS E., MEERS E. Phytoremediation, a sustainable remediation technology? Conclusions from a case study. I: energy production and carbon dioxide abatement. Biomass Bioenerg. 39, 454, 2012.
  • 16. ZHANG X., XIA H., LI Z., ZHUANG P., GAO B. Potential of four forage grasses in remediation of Cd and Zn contaminated soils. Bioresource Technol. 101, 2063, 2010.
  • 17. ZHANG X., GAO B., XIA H. Effect of cadmium on growth, photosynthesis, mineral nutrition and metal accumulation of bana grass and vetiver grass. Ecotox. Environ. Safe. 106, 102, 2014.
  • 18. HU Z., XIE Y., JIN G., FU J., LI H. Growth responses of two tall fescue cultivars to Pb stress and their metal accumulation characteristics. Ecotoxicology 24, 563, 2014.
  • 19. MEYER A.K.P., EHIMEN, E.A., HOLMNIELSEN J.B. Bioenergy production from roadside grass: a case study of the feasibility of using roadside grass for biogas production in Denmark. Resour. Conserv. Recy. 93, 124, 2014.
  • 20. XU P., WANG Z. Comparison Study in Cadmium Tolerance and Accumulation in Two Cool-Season Turfgrasses and Solanum nigrum L. Water Air Soil Pollut. 225, 1, 2014.
  • 21. MARSCHNER P. Mineral nutrition of higher plants, 3rd edn. London, 649, 2012.
  • 22. SARWAR N., SAIFULLAH, MALHI S.S., ZIA M.H., NAEEM A., BIBI S., FARID G. Role of mineral nutrition in minimizing cadmium accumulation by plants. J. Sci. Food Agric. 90, 925, 2010.
  • 23. ZHANG G., FUKAMI M., SEKIMOTO H. Influence of cadmium on mineral concentrations and yield components in wheat genotypes differing in cd tolerance at seedling stage. Field Crop Res. 77, 93, 2002.
  • 24. PEÑARRUBIA L., ANDRÉS-COLÁS N., MORENO J., PUIG S. Regulation of copper transport in Arabidopsis thaliana: a biochemical oscillator? J. Biol. Inorg. chem. 15, 29, 2010.
  • 25. FLOWERS T.J., COLMER T.D. Salinity tolerance in halophytes. New Phycol. 179, 945, 2008.
  • 26. GHNAYA T., SLAMA I., MESSEDI D., GRIGNON C., GHORBEL M.H., ABDELLY C. Effects of Cd²⁺ on K⁺, Ca²⁺ and N uptake in two halophytes Sesuvium portulacastrum and Mesembryanthemum crystallinum: consequences on growth. Chemosphere 67, 72, 2007.
  • 27. WALI M., GUNSÈ B., LLUGANY M., CORRALES I., ABDELLY C., POSCHENRIEDER C., GHNAYA T. High salinity helps the halophyte sesuvium portulacastrum in defense against cd toxicity by maintaining redox balance and photosynthesis. Planta 244 (2), 333, 2016.
  • 28. HE J., LI H., LUO J., MA C., LI S., QU L., CAI Y., JIANG X., JANZ D., POLLE A., TYREE M., LUO Z. A transcriptomic network underlies microstructural and physiological responses to cadmium in Populus × canescens. Plant Physiol. 162 (1), 424, 2013.
  • 29. ZOUARI M., ELLOUMI N., BEN AHMED C., DELMAIL D., BEN ROUINA B., BENABDALLAH F., LABROUSSE, P. Exogenous proline enhances growth, mineral uptake, antioxidant defense, and reduces cadmium-induced oxidative damage in young date palm (Phoenix dactylifera, L.). Ecol. Eng. 86, 202, 2016.
  • 30. ZHANG C., GUO J., LEE D.K., ANDERSON E., HUANG H. Growth responses and accumulation of cadmium in switchgrass (Panicum virgatum L.) and prairie cordgrass (Spartinapectinata Link). Rsc Adv. 5, 83700, 2015.
  • 31. MANIKANDAN R., EZHILI N., VENKATACHALAM P. Phosphorus supplementation alleviation of the cadmium-induced toxicity by modulating oxidative stress mechanisms in Vetiver Grass [Chrysopogon Zizanioides (L.) roberty]. J. Environ. Eng. 142, 1, 2016.
  • 32. ARDUINI L., GODBOLD D.L., ONNISA A., STEFANI A. Heavy metals influence mineral nutrition of tree seedlings. Chemosphere, 36, 739, 1998.
  • 33. HU Y., WANG D., WEI L., ZHANG X., SONG B. Bioaccumulation of heavy metals in plant leaves from Yan׳an city of the loess plateau, China. Ecotox. Environ Safe. 110, 82, 2014.
  • 34. SHABANI L., SABZALIAN M.R., POUR S.M. Arbuscular mycorrhiza affects nickel translocation and expression of ABC transporter and metallothionein genes in Festuca arundinacea. Mycorrhiza 26:1, 2015.
  • 35. SIPOS G., SOLTI A., CZECH V., VASHEGYI I., CSEH E., FODOR F. Heavy metal accumulation and tolerance of energy grass (Elymus elongatus subsp. ponticus cv. Szarvasi-1) grown in hydroponic culture. Plant Physiol. Biochem. 68, 96, 2013.
  • 36. LI C., XIAO B., WANG Q., YAO S., WU J. Phytoremediation of Zn- and Cr-contaminated soil using two promising energy grasses. Water Air Soil Pollut. 225 (7), 1, 2014.
  • 37. JONES D.L., DARAH P.R., KOCHIAN L.V. Critical evaluation of organic acid mediated iron dissolution in the rhizosphere and its potential role in root iron uptake. Plant Soil 180, 57, 1996.
  • 38. FU L., CHEN C., WANG B., ZHOU X., LI S., GUO P., SHEN Z., WANG G., CHEN Y. Differences in Copper Absorption and Accumulation between Copper-Exclusion and Copper-Enrichment Plants: A Comparison of Structure and Physiological Responses. Plos One 10(7), e0133424, 2015.
  • 39. KIM D.Y., BOVET L., MAESHIMA M., MARTINOIA E., LEE Y. The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. Plant J. 50, 207, 2007.
  • 40. ZHANG X., LIN A., GAO Y., REID R., WONG M., ZHU Y. Arbuscular mycorrhizal colonisation increases copper binding capacity of root cell walls of Oryza sativa L. and reduces copper uptake. Soil Biol. Biochem. 41, 930, 2009.
  • 41. HEMELRAAD J., HOLWERDA D.A., WIJNNE H.J.A., ZANDEE D.I. Effects of cadmium in freshwater clams. i. interaction with essential elements in Anodonta cygnea. Arch. Environ. Contam. Toxicol. 19 (5), 686, 1990.
  • 42. GRATTAN S., GRIEVE C. Salinity-mineral nutrient relations in horticultural crops. Sci. Hortic. 78 (1-4), 127, 1998.
  • 43. GREWAL H.S. Response of wheat to subsoil salinity and temporary water stress at different stage of reproductive phase. Plant Soil 330 (1-2),103, 2010.
  • 44. HAN R.M, LEFÈVRE I., RUAN C.J., QIN P., LUTTS S. NaCl differently interferes with Cd and Zn toxicities in the wetland halophyte species Kosteletzkya virginica (L.) Presl. Plant Growth Regul. 68 (1), 97, 2012.
  • 45. GHNAYA T., NOUAIRI I., SLAMA I., MESSEDI D., GRIGNON C., ABDELLY C., GHORBEL M.H. Cadmium effects on growth and mineral nutrition of two halophytes: Sesuvium portulacastrum and Mesembryanthemum crystallinum. J. Plant Physiol. 162, 1133, 2005.
  • 46. WEIMBERG R. Growth and solute accumulation in 3-week-old seedlings of agropyron elongatiun, stressed with sodium and potassium salts. Physiol. Plant. 67(2), 129, 2010.
  • 47. KALAI T., KHAMASSI K., SILVA J.A.T.D., GOUIA H., BEN-KAAB L.B. Cadmium and copper stress affect seedling growth and enzymatic activities in germinating barley seeds. Arch. Agron. Soil Sci. 60 (6), 765, 2014.
  • 48. LI X., MA H., JIA P., WANG J., JIA L., ZHANG T., YANG Y., CHEN H., WEI X. Responses of seedling growth and antioxidant activity to excess iron and copper in triticum aestivum, l. Ecotox. Environ. Safe. 86 (4), 47, 2012.
  • 49. ADEM G.D., ROY S.J., ZHOU M., BOWMAN J., SHABALA S. Evaluating contribution of ionic, osmotic and oxidative stress components towards salinity tolerance in barley. BMC plant biology, 14, 113, 2014.
  • 50. BRZΌSKA M.M., MONIUSZKO-JAKONIUK J. Interactions between cadmium and zinc in the organism. Food Chem. Toxicol. 39, 967, 2001.
  • 51. SIMMONS R.W., PONGSAKUL P., SAIYASITPANICH D., KLINPHOKLAP S. Elevated levels of cadmium and zinc in paddy soils and elevated levels of cadmium in rice grain downstream of a zinc mineralized area in thailand: implications for public health. Environ. Geochem. Health. 27, 501, 2005.
  • 52. DONG J., MAO W., ZHANG G., WU F., CAI Y. Root excretion and plant tolerance to cadmium toxicity-a review. Plant Soil Environ. 53, 193, 2007.
  • 53. DU J., YAN C., LI Z. Phosphorus and cadmium interactions in Kandelia obovata (S. L.) in relation to cadmium tolerance. Environ. Sci. Pollut. Res. 21, 355, 2014.
  • 54. LIU H., ZHANG J., CHRISTIE P., ZHANG F. Influence of iron plaque on uptake and accumulation of Cd by rice (Oryza sativa L.) seedlings grown in soil. Sci. Total Environ. 394, 361, 2008.
  • 55. ALVA A.K., CHEN E. Effects of external copper concentrations on uptake of trace elements by citrus seedlings. Soil Sci. 159, 59, 1995.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-fab7835c-4957-4ef8-9d46-d8a73a8151f8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.