PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 32 | 5 |

Tytuł artykułu

Glyphosate affects lignin content and amino acid production in glyphosate-resistant soybean

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Farmers report that some glyphosate-resistant soybean varieties are visually injured by glyphosate. Glyphosate is the main herbicide that directly affects the synthesis of secondary compounds. In this work, we evaluated the effect of increasing rates of glyphosate on lignin and amino acid content, photosynthetic parameters and dry biomass in the early maturity group cultivar BRS 242 GR soybean. Plants were grown in half-strength complete nutrient solution and subjected to various rates of glyphosate either as a single or in sequential applications. All parameters evaluated were affected by increasing glyphosate rates. The effects were more pronounced as glyphosate rates increased, and were more intense with a single total application than sequential applications at lower rates.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

32

Numer

5

Opis fizyczny

p.831-837,fig.,ref.

Twórcy

  • Center for Advanced Studies in Weed Research (NAPD), State University of Maringa´ (UEM), Colombo Av., 5790, Maringa´, Parana´ 87020-900, Brazil
autor
  • Department of Biochemistry, University of Maringa´, Av. Colombo, 5790, Maringa´, Parana´ 87020-900, Brazil
  • Center for Advanced Studies in Weed Research (NAPD), State University of Maringa´ (UEM), Colombo Av., 5790, Maringa´, Parana´ 87020-900, Brazil
autor
  • United States Department of Agriculture, Agricultural Research Service, Cropping Systems and Water Quality Research Unit, Columbia, MO 65211, USA
  • Department of Biochemistry, University of Maringa´, Av. Colombo, 5790, Maringa´, Parana´ 87020-900, Brazil

Bibliografia

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15
  • Arregui MC, Lenardón A, Sanchez D, Maitre MI, Scotta R, Enrique S (2003) Monitoring glyphosate residues in transgenic glyphosate-resistant soybean. Pest Manage Sci 60:163–166
  • Beale SI (1978) δ-Aminolevulinic acid in plants: its biosynthesis, regulation and role in plastid development. Annu Rev Plant Physiol 29:95–120
  • Bernards MA, Susag LM, Bedgar DL, Anterola AM, Lewis NG (2000) Induced phenylpropanoid metabolism during suberization and lignification: a comparative analysis. J Plant Physiol 157:601–607
  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546
  • Boocock MR, Coggins JR (1983) Kinetics of 5-enolpyruvylshikimate-3-phosphate synthase inhibition by glyphosate. FEBS Lett 154:127–133
  • Boudet AM (2000) Lignins and lignification: selected issues. Plant Physiol Biochem 38:1–16
  • Boudet AM, Kajita S, Grima-Pettenati J, Goffner D (2003) Lignins and lignocellulosics: a better control of synthesis for new improved uses. Trend Plant Sci 8:576–581
  • Cakmak I, Yazici A, Tutus Y, Ozturk L (2009) Glyphosate reduced seed and leaf concentrations of calcium, manganese, magnesium and iron in non-glyphosate resistant soybean. Euro J Agron 31:114–119
  • Capeleti I, Bonini EA, Ferrarese MLL, Teixeira ACN, Kryzanowski FC, Ferrarese-Filho O (2005) Lignin content and peroxidase activity in soy bean seed coat susceptible and resistant to mechanical damage. Acta Physiol Plant 27:103–108
  • Chen F, Reddy MSS, Temple S, Jackson L, Shadle G, Dixon RA (2006) Multi-site genetic modulation of monolignol biosynthesis suggests new routes for formation of syringyl lignin and wallbound ferulic acid in alfafa (Medicago sativa L.). Plant J 48:113–124
  • Coutinho CFB, Mazo LH (2005) Metallic complex with glyphosate: a review. Quim Nova 28:1038–1045
  • Devine M, Duke SO, Fedtke C (1993a) Inhibition of amino acid biosynthesis. In: Physiology of herbicide action. Prentice-Hall, New Jersey, pp 251–294
  • Devine M, Duke SO, Fedtke C (1993b) Oxygen toxicity and herbicidal action; secondary physiological effects of herbicides. In: Physiology of herbicide action. Prentice-Hall, New Jersey, pp 177–188
  • Donaldson LA (2001) Lignification and lignin topochemistry—an ultrastructural view. Phytochemistry 57:859–876
  • Duke SO, Rimando AM, Pace PF, Reddy KN, Smeda RJ (2003) Isoflavone, glyphosate, and aminomethylphosphonic acid levels in seeds of glyphosate-treated, glyphosate-resistant soybean. J Agric Food Chem 51:340–344
  • Ferrarese MLL, Zottis A, Ferrarese-Filho O (2002) Protein-free lignin quantification in soybean (Glycine max) roots. Biologia 57:541–543
  • Franz JE, Mao MK, Sikorski JA (1997) Glyphosate: a unique global herbicide. ACS monograph 189, American Chemical Society, pp 521–615
  • Gosselink RJA, de Jong E, Guran B, Abacherli A (2004) Coordination network for lignin—standardisation, production and applications adapted to market requirements (EUROLIGNIN). Ind Crops Prod 20:121–129
  • Hernandez A, Garcia-Plazaola JI, Bacerril JM (1999) Glyphosate effects on phenolic metabolism of nodulated soybean (Glycine max L. Merril). J Agric Food Chem 47:2920–2925
  • Hoagland DR, Arnon DI (1950) The water-culture method of growing plants without soil. California Agric Exper Sta Cir, n. 347
  • Johal GS, Huber DM (2009) Glyphosate effects on disease and disease resistance in plants. Euro J Agron 31:144–152
  • Kabachnik MI, Medved TY, Dyatolva NM, Rudomino MV (1974) Organophosphorus complexones. Russian Chem Rev 43:733–744
  • King CA, Purcell LC, Vories ED (2001) Plant growth and nitrogenase activity of glyphosate-tolerant soybean in response to foliar glyphosate applications. Agron J 93:79–186
  • Kishore GM, Shah DM (1988) Amino acid biosynthesis inhibitors as herbicides. Ann Rev Biochem 57:627–663
  • LaRossa RA, Schloss JV (1984) The sulfonylurea herbicide sulfometuron methyl is an extremely potent and selective inhibitor of acetolactate synthase in Salmonella typhimurium. J Biol Chem 259:8753–8757
  • Liu F, Andersen MN, Jacobsen SE, Jensen CR (2005) Stomatal control and water use efficiency of soybean (Glycine max L. Merr.) during progressive soil drying. Env Exp Bot 54:33–40
  • Lora JH, Glasser WG (2002) Recent industrial applications of lignin: a sustainable alternative to nonrenewable materials. J Polym Environ 10:39–48
  • Marchiosi R, Ferrarese Filho ML, Bonini EA, Fernandes NG, Ferro AP, Ferrarese Filho O (2009) Glyphosate-induced metabolic changes in susceptible and glyphosate-resistant soybean (Glycine max L.) roots. Pest Biochem Physiol 21:155–164
  • Nilsson G (1985) Interactions between glyphosate and metals essential for plant growth. In: Grossbard E, Atkinson D (eds) The herbicide glyphosate. Butterworth, London, pp 35–47
  • Padgette SR, Kolacz KH, Delannay XD, La Vallee BJ, Tinius CN, Rhodes WK, Otero YI, Barry GF, Eichholtaz DA, Peschke WM, Nida DL, Taylor NB (1995) Development, identification and characterization of a glyphosate tolerant soybean line. Crop Sci 35:1451–1461
  • Pihakaski S, Pihakaski K (1980) Effects of glyphosate on ultrastructure and photosynthesis of Pellia epiphylla. Ann Bot 46:133–141
  • Pinkard EA, Pate V, Mohammed C (2006) Chlorophyll and nitrogen determination for plantation-grown Eucaliptus nitens and E. glogulus using a non-destructive meter. Forest Ecol Manag 223:211–217
  • Procópio SO, Santos JB, Silva AA, Matinez CA, Werlang RC (2004) Características fisiológicas das culturas de soja e feijão e de três espécies de plantas daninhas. Planta Daninha 22:211–216
  • Reddy KN, Hoagland RE, Zablotowicz RM (2000) Effect of glyphosate on growth, chlorophyll, and nodulation in glyphosate-resistant and susceptible soybean (Glycine max) varieties. J New Seeds 2:37–52
  • Reddy KN, Rimando AM, Duke SO (2004) Aminomethylphosphonic acid, a metabolite of glyphosate, causes injury in glyphosate-treated, glyphosate-resistant soybean. J Agric Food Chem 52:5139–5143
  • Rena AB, Masciotti Z (1976) Efeito do déficit hídrico sobre o metabolismo do nitrogênio e o crescimento de quatro cultivares de feijão (Phaseolus vulgaris L.). Revista Ceres 23:288–301
  • Richardson AD, Duigan SP, Berlyn GP (2002) An evaluation of noninvasive methods to estimate foliar chlorophyll content. New Phytol 153:185–194
  • Saltveit ME, Mencarelli F (1988) Inhibition of ethylene synthesis and action in ripening tomato fruit by ethanol vapors. J Am Soc Hort Sci 113:742–745
  • Shapiro SS, Wilk MB (1965) An analysis of variance test for normality. Biometrika 52:591–611
  • Shibles RM, Weber CR (1965) Leaf area, solar radiation interception, and dry matter production by various soybean planting patterns. Crop Sci 6:575–577
  • Singh BK, Siehl DL, Connelly JA (1991) Shikimate pathway: why does it mean so much to so many? Oxf Surv Plant Mol Cell Biol 7:143–185
  • SPSS (2000) SysStat for Windows, Version 10
  • Taiz L, Zeiger E (1998) Mineral nutrition. In: Plant physiology. Sinauer Associates, Sunderland, pp 111–144
  • Tan S, Evans R, Singh B (2006) Herbicidal inhibitors of amino acid biosynthesis and herbicide-tolerant crops. Amino Acids 30:195–204
  • Weaver LM, Herrmann KM (1997) Dynamics of the shikimate pathway in plants. Trends Plant Sci 2:346–351
  • Wong PK (2000) Effects of 2, 4-D, glyphosate and paraquat on growth, photosynthesis and chlorophyll-a synthesis of Scenedesmus quadricauda. Chemosphere 41:177–182
  • Zablotowicz RM, Reddy KN (2007) Nitrogenase activity, nitrogen content, and yield responses to glyphosate in glyphosate-resistant soybean. Crop Prot 26:370–376
  • Zobiole LHS, Oliveira Jr RS, Hubner DM, Constantin J, Castro de C, Oliveira de FA, Oliveira Jr A (2009) Glyphosate reduces shoot concentration of mineral nutrients in glyphosate-resistant soybeans. Plant Soil. doi:10.1007/s11104-009-0081-3

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-fa8a2220-c5b4-4b16-865f-d84b1acb4411
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.