PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 14 | 2 |

Tytuł artykułu

Distribution patterns of bats in the Eastern Mediterranean Region through a climate change perspective

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The impact of climate change on different species has been analyzed many times in various geographical areas. However, some areas still have a large knowledge gap while harbouring significant levels of biodiversity. The main aim of this study was to determine how climate change will affect 16 different bat species in the Eastern Mediterranean Region. Using presence only modelling techniques and relevant bioclimatic data forecasts according to two different climate change scenarios (A2A and B2A) of the Intergovernmental Panel on Climate Change (IPCC), the potential geographic distribution of bat species in the eastern Mediterranean region for the current period and the years 2020, 2050 and 2080 were modelled. The results suggest that climate change can affect bats negatively throughout the 21st century in the studied area on two fronts: i) species richness will deteriorate, and ii) the total area occupied by bats will decline. These impacts are likely to be more severely observed in Turkey's coastal areas, northwest Turkey, Red Sea coasts, Israel, and the west of Syria and Jordan. Using only bioclimatic variables as factors, and thus not using any land cover (or habitat) data, was the main limitation of the study. Hence the models and results of the study present ‘best case’ scenarios.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

14

Numer

2

Opis fizyczny

p.425-437,ref.

Twórcy

autor
  • Institute of Environmental Sciences, Boğaziçi University, Bebek, 34342, Istanbul, Turkey
autor
  • Institute of Environmental Sciences, Boğaziçi University, Bebek, 34342, Istanbul, Turkey
autor
  • CIBIO/UP, R. Padre Armando Quintas 4485-661, Vairão, Portugal
  • University of Bristol, Woodland Road BS8 IUG, Bristol, United Kingdom

Bibliografia

  • 1. R. A. Adams , and M. A. Hayes . 2008. Water availability and successful lactation by bats as related to climate change in arid regions of western North America. Journal of Animal Ecology, 77: 1115–1121. Google Scholar
  • 2. W. Amos, and A. Balmford . 2001. When does conservation genetics matter? Heredity, 87: 257–265. Google Scholar
  • 3. M. B. Araújo , W. Thuiller , and R. G. Pearson . 2006. Climate warming and the decline of amphibians and reptiles in Europe. Journal of Biogeography, 33: 1712–1728. Google Scholar
  • 4. J. C. Avise 2000. Phylogeography: the history and formation of species. Harvard University Press, Cambridge, viii + 447 pp. Google Scholar
  • 5. P. Benda , and I. Horáček . 1998. Bats (Mammalia: Chiroptera) of the Eastern Mediterranean. Part 1. Review of distribution and taxonomy of bats in Turkey. Acta Societas Zoologicae Bohemicae, 62: 255–313. Google Scholar
  • 6. P. Benda , P. Hulva , M. Andreas , and M. Uhrin . 2003. Notes on the distribution of Pipistrellus pipistrellus complex in the Eastern Mediterranean: first records of P. pipistrellus for Syria and of P. pygmaeus for Turkey. Vespertilio, 7: 87–95. Google Scholar
  • 7. P. Benda , M. andreas , D. Kock , R. K. Lučan , P. Munclinger , P. Nova , J. Obuch , K. Ochman , A. Reiter , and M. Uhrin . 2006. Bats (Mammalia: Chiroptera) of the eastern Mediterranean. Part 4. Bat fauna of Syria: distribution, systematics, ecology. Acta Societatis Zoologicae Bohemicae, 70: 1–329. Google Scholar
  • 8. P. Benda , V. Hanák , I. Horáček , P. Hulva , R. Lučan , and M. Ruedi . 2007. Bats (Mammalia: Chiroptera) of the Eastern Mediterranean. Part 5. Bat fauna of Cyprus: review of records with confirmation of six species new for the island and description of a new subspecies. Acta Societatis Zoologicae Bohemicae, 71: 71–130. Google Scholar
  • 9. P. Benda , C. Dietz , M. andreas , J. Hotovi , R. K. Lučan , A. Maltby , K. Meakin , J. Truscott , and P. Vallo . 2008. Bats (Mammalia: Chiroptera) of the Eastern Mediterranean and Middle East. Part 6. Bats of Sinai (Egypt) with some taxonomic, ecological and echolocation data on that fauna. Acta Societas Zoologicae Bohemicae, 72: 1–103. Google Scholar
  • 10. P. Benda , R. K. Lučan , J. Obuch , A. Reiter , M. andreas , P. Bačkor , T. Bohnenstengel , E. K. Eid , M. Ševčík , P. Vallo , et al. 2010. Bats (Mammalia: Chiroptera) of the Eastern Mediterranean and Middle East. Part 8. Bats of Jordan: fauna, ecology, echolocation, ectoparasites. Acta Societas Zoologicae Bohemicae, 74: 185–353. Google Scholar
  • 11. L. Bernstein , P. Bosch , O. Canziani , Z. Chen , R. Christ , O. Davidson , W. Hare , S. Huq , D. Karoly , V. Kattsov , et al. 2007. Climate change 2007 synthesis report: contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland, 104 pp. Google Scholar
  • 12. R. Bilgin, A. Karataş, E. Çoraman, T. Disotell, and J. C. Morales . 2008a. Regionally and climatically restricted patterns of distribution of genetic diversity in a migratory bat species, Miniopterus schreibersii (Chiroptera: Vespertilionidae). BMC Evolutionary Biology, 8. doi: 10.1186/14712148-1188-1209. Google Scholar
  • 13. R. Bilgin, A. Karataş, E. Çoraman, and J. C. Morales . 2008b. The mitochondrial and nuclear genetic structure of Myotis capaccinii (Chiroptera: Vespertilionidae) in the Eurasian transition, and its taxonomic implications. Zoologica Scripta, 37: 253–262. Google Scholar
  • 14. G. Booy , R. J. J. Hendriks , M. J. M. Smulders , J. M. Van Groenendael , and B. Vosman . 2000. Genetic diversity and the survival of populations. Plant Biology, 2: 379–395. Google Scholar
  • 15. N. Cooper , W. Jetz , and R. P. Freckleton . 2011. Phylogenetic comparative approaches for studying niche conservatism. Journal of Evolutionary Biology, 23: 2529–2539. Google Scholar
  • 16. J. Elith , C. H. Graham , R. P. Anderson , M. Dudik , S. Ferrier , A. Guisan , R. J. Hljmans , F. Huettman , J. R. Leathwick , A. Lehmann , et al. 2006. Novel methods improve prediction of species' distributions from occurrence data. Ecography, 29: 129–151. Google Scholar
  • 17. A. H. Fielding , and J. F. Bell . 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24: 38–49. Google Scholar
  • 18. J. Flanders , L. Wei , S. J. Rossiter , and S. Zhang . 2011. Identifying the effects of the Pleistocene on the greater horseshoe bat, Rhinolophus ferrumequinum, in East Asia using ecological niche modelling and phylogenetic analyses. Journal of Biogeography, 38: 439–452. Google Scholar
  • 19. R. Frankham 2005. Genetics and extinction. Biological Conservation, 126: 131–140. Google Scholar
  • 20. A. Furman , and A. Özgül . 2002. Distribution of cave-dwelling bats and conservation status of underground habitats in the Istanbul area. Ecological Research, 17: 69–77. Google Scholar
  • 21. A. Furman , and A. Özgül . 2004. The distribution of cavedwelling bats and conservation status of underground habitats in Northwestern Turkey. Biological Conservation, 120: 243–248. Google Scholar
  • 22. D. K. Grayson 2005. A brief history of Great Basin pikas. Journal of Biogeography, 32: 2103–2111. Google Scholar
  • 23. P. W. Hedrick , and S. T. Kalinowsi . 2000. Inbreeding depression in conservation biology. Annual Review of Ecology and Systematics, 31: 139–162. Google Scholar
  • 24. G. C. Hegerl , F. W. Zwiers , P. Braconnot , N. P. Gillett , Y. Luo , J. Marengo , N. Nicholls , J. E. Penner , and P. A. Stott . 2007. Understanding and attributing climate change. Pp. 663–745, in Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change ( S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller , eds.). Cambridge University Press, Cambridge, 996 pp. Google Scholar
  • 25. P. A. Hernandez , C. H. Graham , L. L. Master , and D. L. Albert . 2006. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography, 29: 773–785. Google Scholar
  • 26. G. M. Hewitt 2000. The genetic legacy of the Quaternary ice ages. Nature, 405: 907–913. Google Scholar
  • 27. R. J. Hijmans , and C. H. Graham . 2006. The ability of climate envelope models to predict the effect of climate change on species distributions. Global Change Biology, 12: 2272–2281. Google Scholar
  • 28. R. J. Humans , L. Guarino , A. Jarvis , P. Mathur , C. Bussink , M. Cruz , I. Barrantes , and E. Rojas . 2005. DIVA-GIS, version 5.2. A geographic information system for the analysis of biodiversity data. Manual. Available from http://www.diva-gis.org . Google Scholar
  • 29. L Horáček , P. Benda , R. Sadek , S. Karkabi , M. Abi-Said , R. Lucan , P. Hulva , and R. Karanouh . 2008. Bats of Lebanon, state of knowledge and perspectives. Al-Ouat'Ouate, Revue Libanaise de Spéléologie et de Karstologie (N.S.), 14: 52–67. Google Scholar
  • 30. B. Huntley , Y. C. Collingham , S. G. Willis , and R. E. Green . 2008. Potential impacts of climatic change on European breeding birds. PLoS ONE, 3: el439. doi:10.1371/journal.pone.0001439. Google Scholar
  • 31. C. Ibáñez 1997. Winter reproduction in the greater mouse-eared bat (Myotis myotis) in South Iberia. Journal of Zoology (London), 243:836–840. Google Scholar
  • 32. W. Jetz , D. S. Wilcove , and A. P. Dobson . 2007. Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biology, 5: e157. doi:110.1371/journal.pbio.0050157. Google Scholar
  • 33. G. Kerth , B. Petrov , A. Conti , D. Anastasov , M. Weishaar , S. Gazaryan , S. Jaquiéry , B. König , N. Perrin , and N. Bruyndonckx . 2008. Communally breeding Bechstein's bats have a stable social system that is independent from the postglacial history and location of the populations. Molecular Ecology, 17: 2368–2381. Google Scholar
  • 34. S. Lourenço , and J. M. Palmeirim . 2004. Influence of temperature in roost selection by Pipistrellus pygmaeus (Chiroptera): relevance for the design of bat boxes. Biological Conservation, 119: 237–243. Google Scholar
  • 35. M. Lundy , I. Montgomery , and J. Russ . 2010. Climate change-linked range expansion of Nathusius' pipistrelle bat, Pipistrellus nathusii (Keyserling & Blasius, 1839). Journal of Biogeography, 37: 2232–2242. Google Scholar
  • 36. E. Martinez-Meyer , A. T. Peterson , and W. W. Hargroves . 2004. Ecological niches as stable distributional constraints on mammal species, with implications for Pleistocene extinctions and climate change projections for biodiversity. Global Ecology & Biogeography, 13: 305–314. Google Scholar
  • 37. F. Mayer , M. Dietz , and A. Kiefer . 2007. Molecular species identification boosts bat diversity. Frontiers in Zoology, 4: 4. doi:l 10.1186/1742-9994-4-4. Google Scholar
  • 38. F. Médail , and K. Diadema . 2009. Glacial refugia influence plant diversity patterns in the Mediterranean Basin. Journal of Biogeography, 36: 1333–1345. Google Scholar
  • 39. Millenium Ecosystem Assessment. 2005. Ecosystems and human well-being: biodiversity synthesis. World Resources Institute, Washington, D.C. Available from http://www.millenniumassessment.org/documents/document.356.aspx.pdf . Google Scholar
  • 40. F. Moreira , and D. Russo . 2007. Modelling the impact of agricultural abandonment and wildfires on vertebrate diversity in Mediterranean Europe. Landscape Ecology, 22: 1461–1476. Google Scholar
  • 41. N. Nakicenovic , O. Davidson , G. Davis , A. Gråbler , T. Kram , E. L. L. Rovere , B. Metz , T. Morita , W. Pepper , H. Pitcher , et al. 2000. Emission scenarios. Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 570 pp. Google Scholar
  • 42. B. Nicholls , and P. A. Racey . 2006. Habitat selection as a mechanism of resource partitioning in two cryptic bat species Pipistrellus pipistrellus and Pipistrellus pygmaeus. Ecography, 29: 697–708. Google Scholar
  • 43. R. G. Pearson, and T. P. Dawson . 2003. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecology & Biogeography, 12: 361–371. Google Scholar
  • 44. A. T. Peterson 2011. Ecological niche conservatism: a timestructured review of evidence. Journal of Biogeography, 38 817–827. Google Scholar
  • 45. A. T Peterson , M. A. Ortega-Huertaf , J. Bartley , V Sáncfiez-Cordero , J. Sober'ai , R. H. Buddemeietf , and D. R. B. Stockwelll . 2002. Future projections for Mexican faunas under global climate change scenarios. Nature, 426: 626–629. Google Scholar
  • 46. S. J. Phillips , R. P. Anderson , and R. E. Schapire . 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190: 231–259. Google Scholar
  • 47. P. A. Racey , and J. R. Speakman . 1987. The energy costs of pregnancy and lactation in heterofhermic bats. Symposia of the Zoological Society of London, 54: 107–125. Google Scholar
  • 48. N. Raes , M. C. Roos , J. W. F. Slik , E. E. Van Loon , and H. Ter Steege . 2009. Botanical richness and endemicity patterns of Borneo derived from species distribution models. Ecography, 32: 180–192. Google Scholar
  • 49. A. Rainho 2007. Summer foraging habitats of bats in a Mediterranean region of the Iberian Peninsula. Acta Chiropterologica, 9: 171–181. Google Scholar
  • 50. J., A. Ramírez and Bueno-Cabrera . 2009. Working with climate data and niche modeling I. Creation of bioclimatic variables. Available from http://gisweb.ciat.cgiar.org/GCMPage/docs/tutorial_bcvars_creation.pdf . Google Scholar
  • 51. C. F. Randin, T. Dirnbîck, S. Dullinger, N. E. Zimmermann, M. Zappa, and A. Guisan . 2006. Are niche-based species distribution models transferable in space? Journal of Biogeography, 33: 1689–1703. Google Scholar
  • 52. O. Razgour , C. Korine , and D. Saltz . 2010. Pond characteristics as determinants of species diversity and community composition in desert bats. Animal Conservation, 13: 505–513. Google Scholar
  • 53. H. E. V. Rebelo 2010. Using species distribution modelling and genetic analysis for the conservation of rare species: case studies on European bats. Ph.D. Thesis, University of Bristol, Bristol, 209 pp. Google Scholar
  • 54. H. Rebelo , and J. C. Brito . 2007. Bat guild structure and habitat use in the Sahara desert. African Journal of Ecology, 45: 228–230. Google Scholar
  • 55. H. Rebelo , and G. Jones . 2010. Ground validation of presence-only modelling with rare species: a case study on barbastelles Barbastella barbastellus (Chiroptera: Vespertilionidae). Journal of Applied Ecology, 47: 410–420. Google Scholar
  • 56. H. Rebelo , P. Tarroso , and G. Jones . 2010. Predicted impact of climate change on European bats in relation to their biogeographic patterns. Global Change Biology, 16: 561–576. Google Scholar
  • 57. L. Rodrigues , A. Zahn , A. Rainho , and J. M. Palmeirim . 2003. Contrasting the roosting behaviour and phenology of an insectivorous bat (Myotis myotis) in its southern and northern distribution ranges. Mammalia, 67: 321–335. Google Scholar
  • 58. T. L. Root , J. T. Price , K. R. Hall , S. H. Schneider , C. Rosenzweig , and J. A. Pounds . 2003. Fingerprints of global warming on wild animals and plants. Nature, 421: 57–60. Google Scholar
  • 59. J. A. Royle , R. B. Chandler , C. Yackulic , and J. D. Nichols . 2012. Likelihood analysis of species occurrence probability from presence-only data for modelling species distributions. Methods in Ecology and Evolution, 12: 545–554. Google Scholar
  • 60. D. Russo , and G. Jones . 2003. Use of foraging habitats by bats in a Mediterranean area determined by acoustic surveys: conservation implications. Ecography, 26: 197–209. Google Scholar
  • 61. D. Russo , L. Cistrone , G. Jones , and S. Mazzoleni . 2004. Roost selection by barbastelle bats (Barbastella barbastellus, Chiroptera: Vespertilionidae) in beech woodlands of central Italy: consequences for conservation. Biological Conservation, 117: 73–81. Google Scholar
  • 62. K. Sachanowicz , A. Wower , and A. T. Bashta . 2006. Further range extension of Pipistrellus kuhlii (Kuhl, 1817) in central and eastern Europe. Acta Chiropterologica, 8: 543–548. Google Scholar
  • 63. J. J. Sanz , J. Potti , J. Moreno , S. Merino , and O. Frías . 2003. Climate change and fitness components of a migratory bird breeding in the Mediterranean region. Global Change Biology, 9: 461–472. Google Scholar
  • 64. D. Scheel , T. L. S. Vicent , and G. N. Cameron . 1996. Global warming and the species richness of bats in Texas. Conservation Biology, 10: 452–464. Google Scholar
  • 65. C. D. Thomas, A. Cameron, R. Green, M. Bakkenes, L. J. Beaumont, Y. C. Collingham, B. F. N. M. F. ErasmusSiqueira, A. Grainger, and L. Hannah , et al. 2004. Extinction risk from climate change. Nature, 427: 145–148. Google Scholar
  • 66. W. Ulrich , K. Sachanowicz , and M. Michalak . 2007. Environmental correlates of species richness of European bats (Mammalia: Chiroptera). Acta Chiropterologica, 9: 347–360. Google Scholar
  • 67. P. I. Webb , J. R. Speakman , and P. A. Racey . 1995. Evaporative water loss in two sympatric species of vespertilionid bat, Plecotus auritus and Myotis daubentonii: relation to foraging mode and implications for roost site selection. Journal of Zoology (London), 235: 269–278. Google Scholar
  • 68. K. Williams-Guillén , I. Perfecto , and J. Vandermeer . 2008. Bats limit insects in a neotropical agroforestry system. Science, 320: 70–70. Google Scholar
  • 69. K. J. Willis , and S. A. Bhagwat . 2009. Biodiversity and climate change. Science, 326: 806–807. Google Scholar
  • 70. Wwf . 2002. Polar bears at risk, a WWF status report. Available from http://awsassets.panda.org/downloads/polarbearsatrisk.pdf . Google Scholar

Uwagi

rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-f84c4110-e2c4-4f95-ac52-6cda8cc6bff4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.