EN
Sugarcane is a highly productive crop plant with the capacity of storing large amounts of sucrose. Sucrose accumulation in the stem of sugarcane has been studied extensively. The initial recognition and characterization of the enzymes involved in sucrose synthesis and cleavage led to the widely accepted models of how sucrose accumulation occurs in the storage tissue. New insights were gained into the physiological role of individual enzyme activities in the process of sucrose accumulation in sugarcane. Studies on cell cultures and on isolated cell fragments initially supported and strengthened these models, but more recent research has revealed their weaknesses. A dynamic model of rapid cycling of sucrose and turnover of sucrose between vacuole, metabolic and apoplastic compartments explains much of the data, but the details of how the cycling is regulated needs to be explored. Genomic research into sucrose metabolism has been based on the premise that cataloging genes expressed in association with the stalk development would ultimately lead to the identification of genes controlling the accumulation of sucrose. Considerable progress has been made in understanding and manipulating the sugarcane genome using biotechnological and cell biology approaches. Thus, the greater understanding of physiology of sucrose accumulation and the sugarcane genome will play a significant role in the future sugarcane improvement programs and will offer new opportunities to develop it as a new-generation industrial crop.