PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2019 | 78 | 1 |

Tytuł artykułu

Osseointegration of hydroxyapatite coatings doped with silver nanoparticles: scanning electron microscopy studies on a rabbit model

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Background: Modern joint arthroplasties rely on osseointegration of metal components through bone ingrowth into hydroxyapatite (HA) layers. However, such surfaces are prone to colonisation by bacteria and formation of biofilms. Application of silver nanoparticles (SNs) to hydroxyapatite coatings could reduce the risk of infection; however, little is known about how this would affect the process of bone ingrowth. This study examined osseointegration of conventional and SN doped HA coatings in a rabbit model. Materials and methods: In this study, 12 cylindrical implants coated with conventional and SN doped HA were implanted into New Zealand white rabbit femora, with each animal receiving both types of implants. After 12 weeks, rabbits were sacrificed, their femora were harvested and implants removed during pull-out testing. Retrieved samples were dehydrated, sputter coated and observed using a scanning electron microscope (SEM) to verify bony ingrowth and retention of SNs. Results: The percentage of implant in direct contact with bone was measured in cross-sections of implants. The SEM analysis demonstrated that osseointegration of the SN doped coatings was similar to the conventional HA samples. A similar morphology of newly formed trabecular bone was observed in both implants, with silver doped HA-coated implants retaining multiple nanoparticles in areas which were not overgrown by bone. Analysis of the bone-implant contact area revealed comparable results for both types of coatings. These finding indicated that SN doped HA coatings are characterised by good osseointegrative properties. Conclusions: Since SNs were found in areas not covered by mineralised bone, it is assumed that the antimicrobial properties of the modified coating may be retained for 12 weeks after implantation. Additional studies are required to fine--tune the composition of HA coatings with SNs, to ensure optimal osseointegrative and antimicrobial properties. (Folia Morphol 2019; 78, 1: 107–113)

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

78

Numer

1

Opis fizyczny

p.107-113,fig.,ref.

Twórcy

autor
  • Department of General Orthopaedics, Musculoskeletal Oncology, Trauma Surgery, Poznan University of Medical Sciences, 28 Czerwca 1956 135/147, 61–545 Poznan, Poland
autor
  • Department of General Orthopaedics, Musculoskeletal Oncology, Trauma Surgery, Poznan University of Medical Sciences, 28 Czerwca 1956 135/147, 61–545 Poznan, Poland
  • Department of General Orthopaedics, Musculoskeletal Oncology, Trauma Surgery, Poznan University of Medical Sciences, 28 Czerwca 1956 135/147, 61–545 Poznan, Poland

Bibliografia

  • 1. Araujo JC, Téran FC, Oliveira RA, et al. Comparison of hexamethyldisilazane and critical point drying treatments for SEM analysis of anaerobic biofilms and granular sludge. J Electron Microsc (Tokyo). 2003; 52(4): 429–433, indexed in Pubmed: 14599106.
  • 2. Besinis A, Hadi SD, Le HR, et al. Antibacterial activity and biofilm inhibition by surface modified titanium alloy medical implants following application of silver, titanium dioxide and hydroxyapatite nanocoatings. Nanotoxicology. 2017; 11(3): 327–338, doi: 10.1080/17435390.2017. 1299890, indexed in Pubmed: 28281851.
  • 3. Bjursten LM, Rasmusson L, Oh S, et al. Titanium dioxide nanotubes enhance bone bonding in vivo. J Biomed Mater Res A. 2010; 92(3): 1218–1224, doi: 10.1002/jbm.a.32463, indexed in Pubmed: 19343780.
  • 4. Cheng Y, Gao Bo, Liu X, et al. In vivo evaluation of an antibacterial coating containing halogenated furanone compound-loaded poly(l-lactic acid) nanoparticles on microarc-oxidized titanium implants. Int J Nanomedicine. 2016; 11: 1337–1347, doi: 10.2147/IJN.S100763, indexed in Pubmed: 27099494.
  • 5. Chisnoiu R, Moldovan M, Păstrav O, et al. The influence of three endodontic sealers on bone healing: an experimental study. Folia Morphol. 2016; 75(1): 14–20, doi: 10.5603/FM.a2015.0079, indexed in Pubmed: 26383505.
  • 6. Ciobanu CS, Iconaru SL, Chifiriuc MC, et al. Synthesis and antimicrobial activity of silver-doped hydroxyapatite nanoparticles. Biomed Res Int. 2013; 2013: 916218, doi: 10.1155/2013/916218, indexed in Pubmed: 23509801.
  • 7. Giavaresi G, Fini M, Cigada A, et al. Mechanical and histomorphometric evaluations of titanium implants with different surface treatments inserted in sheep cortical bone. Biomaterials. 2003; 24(9): 1583–1594, indexed in Pubmed: 12559818.
  • 8. Kose N, Çaylak R, Pekşen C, et al. Silver ion doped ceramic nano-powder coated nails prevent infection in open fractures: In vivo study. Injury. 2016; 47(2): 320–324, doi: 10.1016/j.injury.2015.10.006, indexed in Pubmed: 26589596.
  • 9. Kose N, Otuzbir A, Pekşen C, et al. A silver ion-doped calcium phosphate-based ceramic nanopowder-coated prosthesis increased infection resistance. Clin Orthop Relat Res. 2013; 471(8): 2532–2539, doi: 10.1007/s11999-013-2894-x, indexed in Pubmed: 23463287.
  • 10. Miura K, Yamada N, Hanada S, et al. The bone tissue compatibility of a new Ti-Nb-Sn alloy with a low Young’s modulus. Acta Biomater. 2011; 7(5): 2320–2326, doi: 10.1016/j.actbio.2011.02.008, indexed in Pubmed: 21316491.
  • 11. Morones JR, Elechiguerra JL, Camacho A, et al. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005; 16(10): 2346–2353, doi: 10.1088/0957-4484/16/10/059, indexed in Pubmed: 20818017.
  • 12. Nirmala R, Sheikh F, Kanjwal M, et al. Synthesis and characterization of bovine femur bone hydroxyapatite containing silver nanoparticles for the biomedical applications. J Nanopart Res. 2010; 13(5): 1917–1927, doi: 10.1007/s11051-010-9944-z.
  • 13. Ogawa T, Ozawa S, Shih JH, et al. Biomechanical evaluation of osseous implants having different surface topographies in rats. J Dent Res. 2000; 79(11): 1857–1863, doi: 10.1177/00220345000790110701, indexed in Pubmed: 11145355.
  • 14. Osibe DA, Chiejina NV, Ogawa K, et al. Stable antibacterial silver nanoparticles produced with seed-derived callus extract of Catharanthus roseus. Artif Cells Nanomed Biotechnol. 2018; 46(6): 1266–1273, doi: 10.1080/21691401.2017.1367927, indexed in Pubmed: 28830244.
  • 15. Punke Ch, Zehlicke T, Just T, et al. Matrix change of bone grafting substitute after implantation into guinea pig bulla. Folia Morphol. 2012; 71(2): 109–114, indexed in Pubmed: 22648590.
  • 16. Salou L, Hoornaert A, Louarn G, et al. Enhanced osseointegration of titanium implants with nanostructured surfaces: an experimental study in rabbits. Acta Biomater. 2015; 11: 494–502, doi: 10.1016/j.actbio.2014.10.017, indexed in Pubmed: 25449926.
  • 17. Saravanan S, Nethala S, Pattnaik S, et al. Preparation, characterization and antimicrobial activity of a bio-composite scaffold containing chitosan/nano-hydroxyapatite/nano-silver for bone tissue engineering. Int J Biol Macromol. 2011; 49(2): 188–193, doi: 10.1016/j.ijbiomac.2011.04.010, indexed in Pubmed: 21549747.
  • 18. Simmons CA, Valiquette N, Pilliar RM. Osseointegration of sintered porous-surfaced and plasma spray-coated implants: An animal model study of early postimplantation healing response and mechanical stability. J Biomed Mater Res. 1999; 47(2): 127–138, indexed in Pubmed: 10449624.
  • 19. Sorkun HÇ, Yay AH, Balcıoğlu E, et al. Assessment of femoral neck fractures in the elderly with respect to morphology and mineral density. Folia Morphol. 2016; 75(4): 536–542, doi: 10.5603/FM.a2016.0013, indexed in Pubmed: 27830871.
  • 20. Vanhegan IS, Malik AK, Jayakumar P, et al. A financial analysis of revision hip arthroplasty: the economic burden in relation to the national tariff. J Bone Joint Surg Br. 2012; 94(5): 619–623, doi: 10.1302/0301-620X.94B5.27073, indexed in Pubmed: 22529080.
  • 21. van Hengel IAJ, Riool M, Fratila-Apachitei LE, et al. Selective laser melting porous metallic implants with immobilized silver nanoparticles kill and prevent biofilm formation by methicillin-resistant Staphylococcus aureus. Biomaterials. 2017; 140: 1–15, doi: 10.1016/j.biomaterials.2017.02.030, indexed in Pubmed: 28622569.
  • 22. Wu D, Fan W, Kishen A, et al. Evaluation of the antibacterial efficacy of silver nanoparticles against Enterococcus faecalis biofilm. J Endod. 2014; 40(2): 285–290, doi: 10.1016/j.joen.2013.08.022, indexed in Pubmed: 24461420.
  • 23. Xie CM, Lu X, Wang KF, et al. Silver nanoparticles and growth factors incorporated hydroxyapatite coatings on metallic implant surfaces for enhancement of osteoinductivity and antibacterial properties. ACS Appl Mater Interfaces. 2014; 6(11): 8580–8589, doi: 10.1021/am501428e, indexed in Pubmed: 24720634.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-f63b79a1-ff64-4f2d-aa8b-68807a71c455
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.