The aim of review was to evaluateoptimal conditions for microorganisms growth from different taxa, includingyeast, bacteria and algae. Maximal efficiency of yeast Saccharomyces cerevisiae propagation occurs in aerated and constant low concentration of sugar medium. Optimal conditions for effective fermentation require high concentration of sugar which is converted into ethanol, however the produced alcohol cause stress and toohigh concentration of alcohol limit yeast growth. Bacteria such as Escherichia coliare also found to produce FAME, a particular product where efficiency of production strictly depends on FFA concentration. Algae Chlorella vulgaris accumulates lipids under nitrogen limit, but inhibited cell growth and division results. Optimal conditions of microorganisms growth depends on expected products and sources which are necessary to initiate particular metabolic pathway, required for production of specific product
Department of Genetics, Branch Campus of the Faculty of Biotechnology, Rzeszow University, Rzeszow, Poland
Bibliografia
[1] Escalante A. S. Cervantes, G. Gosset, F. Bolivar, Current knowledge of the Escherichia coli phosphoenolpyruvate–carbohydrate phosphotransferase system: peculiarities of regulation and impact on growth and product formation. Appl. Microbiol.Biotechnol. 94 (2012) 1483-1494.
[2] Foster J. Gesher, Metabolic engineering of Escherichia coli for production of mixed-acid fermentation end products. Front. Bioeng. Biotechnol. (2014).
[3] Guccione N. Biondi, G. Sampietro, L. Rodolfi, N. Bassi, M. R. Tredi, Chlorella for protein and biofuels: from strain selection to outdoor cultivation in a Green Wall Panel photobioreactor. Biotechnology and fuels 7 (2014) 84.
[4] Martinez T. B., Grabar K. T., Shanmugam L. P., Yomano S. W., York L. O., Ingram,Low salt medium for lactate and ethanol production by recombinant Escherichia coli B. Biotechnol Lett 29 (2007) 397-404.
[5] A. Mercenier, Molecular genetics of Streptococcus thermophiles, FEMS microbiology reviews, 1-2(7) (1990) 61-77.
[6] R. Shen, E. I. Lan, Y. Dekishima., A. Baez, K. M. Cho, J. C. Liao. Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli. Appl Environ Microbiol. 77 (2011) 2905-2915.
[7] P. Clark, The fermentation pathways of Escherichia coli. FEMS Microbiol. Rev.5 (1989) 223-234.
[8] F.M. Carrau, K. Medina, L. Farina, E. Boido, P. A Henschke, E. Dallacassa, Production of fermentation aroma compounds bySaccharomycescerevisiaewine yeasts: effects of yeast assimilable nitrogen on two model strains. FEMS Yeast Res. 8/7(2008) 1196-1207.
[9] G. P. Casey, C. A. Magnus, W. M. Ingledew, High-Gravity Brewing: Effects of Nutrition on Yeast Composition, Fermentative Ability, and Alcohol Production, Appl and Environ.Microbiology (1984), 639-646.
[10] H. Iwamoto, Industrial production of microalgal cell-mass and secondary products-major industrial species. In Handbook of Microalgal Culture: Biotechnology and Applied Phycology. 1st edition. Edited by: Richmond A. Oxford: Blackwell Publishing; (2004) 255-263.
[11] I. Brányiková, B.Maršálková, J. Doucha, T. Brányik, K. Bišová, V. Zachleder, M. Vítová, Microalgae – novel highly efficient starch producers. Biotechnol Bioeng.(2011) 766-776.
[12] J. Doucha, K. Lívanský, Production of high-density Chlorella culture grown in fermenters. J Appl Phycol (2012) 35-43.
[13] J. Kiers, A. M. Zeeman, M. Luttik, C. Thiele, J. I. Castrillo, H. Y. Steensma, J.P. van Dijken, J. T. Pronk, Regulation of alcoholic fermentation in batch and chemostat cultures of Kluyveromyces lactis CBS 2359. Yeast 14 (1998) 459-469.
[14] J. Piskur, E. Rozpedowska, S. Polakova, A. Merico, C. Compagno, How did Saccharomyces evolve to become a good brewer? Trends genet. 22(4) (2006) 183-186.
[15] J. R. Broach, Nutritional Control of Growth and Development in Yeast, Genetic192(1) (2012) 73-105.
[16] K. A. Presser, D. A. Ratkowsky, T. Ross, Modelling the growth rate of Escherichia coli as a function of pH and lactic acid concentration. Appl. Environ. Microbiol.63 (1997) 2355-2360.
[17] L. Butinar, S. Santos, I. Spencer-Martins, A. Oren, N. Gunde-Cimerman, Yeast diversity in hypersaline habitats, Fems Microbiology Letters 244 (2015) 229-134.
[18] L. Chen, T. Liu, W. Zhang, X. Chen, J. Wang, Biodiesel production from algae oil high in free fatty acids by two-step catalytic conversion. Bioresour. Technol. 211 (2012) 208-214.
[19] M. A. Salter, Effects of temperature and water activity on Escherichia coli in relation to beef carcasses (1998). PhD Thesis, University of Tasmania, Australia.
[20] M. J. Griffiths, R. P van Hille, S. T. L. Harrison, The effect of nitrogen limitation on lipid productivity and cel composition in Chlorella vulgaris, Applied Microbiology and Biotechnology 98(5) (2014) 2345-2356.
[21] O. Kappeli, Regulation of carbon metabolism in Saccharomyces cerevisiae and related yeasts. Adv Microb Physiol 28(1986) 181-203.
[22] O. Pulz, J. Broneske, P. Waldeck, IGV GmbH experience report, industrial production of microalgae under controlled conditions: innovative prospects. In Handbook of Microalgal Culture, Applied Phycology and Biotechnology. 2nd edition. Edited by: Richmond A, Hu Q. Oxford: Wile (2013), 445-460.
[23] O. Pulz, W. Gross, Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65 (2004) 635-648.
[24] P. Nawabi, S. Bauer, N. Kyrpides, A. Lykidis, Enginiering Escherichia Coli for Biodeasel Production Utilizing a Bacterial Fatty Acid Methylotransferase, AEM (2011) 8052-8061.
[25] P. Spolaore, C. Joannis-Cassan, E. Duran, A. Isambert, Commercial applications of microalgae. J Biosci Bioeng 101 (2006) 87-96.
[26] P. Přibyl, V. Cepák, V. Zachleder, Production of lipids and formation and mobilization of lipids bodies in Chlorella vulgaris. Journal of applied phycology 25(2) (2013) 545-553.
[27] T. Berthe, M. Ratajczak, O. Clermont, E. Denamur., F. Petit. 2013. Evidence for coexistence of distinct Escherichia coli populations in various aquatic environments and their survival in estuary water. Appl. and Envirl. Microbiol. 79 (2013) 4684-4693.
[28] T. Ross T., D. A. Ratkowsky, L. A. Mellefont, T. A. McMeekin, Modelling the effects of temperature, water activity, pH and lactic acid concentration on the growth rate of Escherichia coli. Inter. J. F. Microbio. 82 (2003) 33-43.
[29] V. Stewart, Nitrate regulation of anaerobic respiratory gene expression in Escherichia coli. Mol. Microbiol. 9 (1993) 425-434.
Uwagi
EN
1st INTERNATIONAL SCIENTIFIC CONFERENCE, dilemmas of scientific research in various fields of science: natural sciences, science and technology, economic and social sciences, humanistic sciences, 10th October, 2016, Cracow, Poland