PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 14 | 4 |

Tytuł artykułu

Mycorrhizal inoculation of apple in replant soils - enhanced tree growth and mineral nutrient status

Treść / Zawartość

Warianty tytułu

PL
Wpływ szczepionek mikoryzowych na wzrost i status mineralnego odżywienia drzew jabłoni rosnących w sadzie z chorobą replantacyjną

Języki publikacji

EN

Abstrakty

EN
The field experiment (2009–2012) was conducted to assess the influence of different biofertilizers (AMF liquid/granular inocula, humic and seaweed extracts) on the growth and yielding of ‘Topaz’/M.26 apple planted on SARD soils in Poland. During conversion to organic orchard trees’ growth, fruit yield, their quality indices as well as nutritional status of leaf and fruit was ascertained. Fruit polyphenol content and their free radical scavenging activity were assessed. Moreover, the mycorrhizal root parameters (mycorrhizal and arbuscules frequency) were also presented. The most vigorous trees were inoculated with liquid inocula MicoPlant M and MicoPlant S. The plants treated with MicoPlant S gave the highest total yield (12.12 kg/tree) and revealed the best productivity (> 1 kg cm-2) as well as the average fruit weight. The liquid suspended inocula were more effective than granular one in terms of mycorrhizal root colonisation. Investigated biofertilizers increased P, K and Cu content of leaf. Organic soil extract (HumiPlant) decreased P and K content of fruit, while seaweed extracts (AlgaminoPlant) increased Ca amount of fruit. These treatments had the lowest K:Ca ratio. Used biofertilizers influenced apples polyphenol content as well as their antioxidant status.
PL
W latach 2009–2012 oceniano wpływ różnych bionawozów (granulowane i płynne inokula mikoryzowe, ekstrakty z glonów morskich i gleb organicznych) na wzrost jabłoni ‘Topaz’/M.26 rosnących w sadzie z występującą chorobą replantacyjną. Podczas konwersji sadu z produkcji konwencjonalnej na ekologiczną oceniano wigor drzew, plon oraz jego jakość, ze szczególnym uwzględnieniem wartości biologicznej owoców (zawartości polifenoli, potencjał antyoksydacyjny). Określono także wpływ preparatów na parametry opisujące mikoryzę drzew (frekwencja mikoryzowa, obfitość arbuskuli) oraz skład mineralny liści i owoców. Najsilniejszym wzrostem odznaczały się drzewa inokulowane przed posadzeniem szczepionkami mikoryzowymi w postaci płynnej: MicoPlant M oraz MicoPlant S. Jabłonie traktowane preparatem MicoPlant S dały największy plon (12,12 kg/drzewo), były też najbardziej produktywne (>1 kg cm2 ), a owoce posiadały największą średnią masę. Ocena kolonizacji mikoryzowej systemu korzeniowego wykazała większą efektywność szczepionek w formie płynnej w porównaniu z granulowanymi. Badane bionawozy zwiększyły zawartość P, K i Cu w blaszkach liściowych. Ekstrakty z gleb organicznych (HumiPlant) zmniejszył koncentrację P i K w jabłkach, podczas gdy ekstrakt z glonów morskich (AlgaminoPlant) zwiększył poziom Ca. W owocach tych kombinacji odnotowano najmniejszą proporcję K:Ca. Zastosowane bionawozy istotnie wpłynęły na zawartość polifenoli w jabłkach, a także ich potencjał antyoksydacyjny.

Wydawca

-

Rocznik

Tom

14

Numer

4

Opis fizyczny

p.17-37,fig.,ref.

Twórcy

autor
  • Faculty of Horticulture, Agricultural University in Krakow, Av.29 Listopada 54, 31-425 Krakow, Poland
  • Faculty of Horticulture, Agricultural University in Krakow, Av.29 Listopada 54, 31-425 Krakow, Poland

Bibliografia

  • Auge, R.M. (2000). Stomatal behavior of arbuscular mycorrhizal plants. In: Arbuscular mycorrhizas: physiology and function, Y., Kapulnik, D.D., Douds. (eds). Kluwer Acad. Publ., Dordrecht, the Netherlands, 201–237.
  • Basak, A. (2006). The effect of a combined treatment with retardant and auxin on mineral composition of fruits seeds and leaves of apple trees. Food Agricult. Environ., 4(2), 150–154.
  • Benzie, F.F., Strain, J.J. (1996). Ferric reducing/Antioxidant Power Assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurements of total antioxidant power and ascorbic acid concentration. Meth. Enzymol., 299, 15–23.
  • Bennewitz, E. von, Hlušek, J. (2006). Effect of the application of two biopreparations on the nutritional status, vegetative and generative behaviour of ‘Jonagold’ apple trees. Acta Hort., 721, 129–135.
  • Brand-Williams, W., Cuvelier, M.E., Berset, C. (1995). Use of free radical method to evaluate antioxidant activity. Lebens. Wiss. Technol., 28, 25–30.
  • Chen, Y., Clapp, C.E., Magen, H. (2004). Mechanisms of plant growth stimulation by humic substances: The role of organo-iron complexes. Soil Sci. Plant Nutri., 50(7), 1089–1095.
  • Clark, R.B., Zeto, S.K. (2008). Mineral acquisition by arbuscular mycorrhizal plants. J. Plant Nutr., 23, 867–902.
  • Daniell T.J., Husband R., Fitter A.H., Young J.P.W. (2001). Molecular diversity of arbuscular mycorrhizal fungi colonising arable crops. FEMS Microbiol. Ecol. 36, 203-209.
  • Douds, D.D., Millner, P.D. (1999). Biodiversity of arbuscular mycorrhizal fungi in agroecosystems. Agricult. Ecosyst. Environ., 74, 77–93.
  • Franke-Snyder, M., Douds, D.D., Galvez, L., Phillips, J.G., Wagoner, P., Drinkwater, L., Morton, J.B. (2001). Diversity of communities of arbuscular mycorrhizal (AM) fungi present in conventional versus low-input agricultural sites in eastern Pennsylvania, USA. Appl. Soil. Ecol., 16, 35–48.
  • Galvez, L., Douds, D.D., Drinkwater, L.E., Wagoner, P. (2001). Effect of tillage and farming system upon VAM fungus populations and mycorrhizas and nutrient uptake of maize. Plant Soil, 228, 299–308.
  • Garg, N., Aggarwal, N. (2012). Effect of mycorrhizal inoculations on heavy metal uptake and stress alleviation of Cajanus cajan (L.) Millsp. genotypes grown in cadmium and lead contaminated soils. Plant Growth Reg., 66, 9–26.
  • Gąstoł, M., Domagała-Świątkiewicz, I. (2010). Effect of arbuscular mycorrhizas and phosphorus fertilization on mineral nutrient status of apple. Acta Biochim. Pol., 57, suppl. 3, 14.
  • Giovannetti, M., Gianinazzi-Pearson, V. (1994). Biodiversity in arbuscular mycorrhizal fungi. Mycol. Res., 98, 705–715.
  • González-Chávez, M.C., Carillo-González, R., Wright, S.F., Nichols, K.A. (2004). Glomalin: a mechanism for heavy-metal sequestration by arbuscular mycorrhizal fungi. Environ. Pollut., 130, 317–323.
  • Gosling, P., Hodge, A., Goodlass, G., Bending, G.D. (2006). Arbuscular mycorrhizal fungi and organic farming. Agric. Ecosys. Environ., 113, 17–35.
  • Harrier, L.A., Watson, C.A. (2004). The potential role of arbuscular mycorrhizal (AM) fungi in the bioprotection of plants against soilborne pathogens in organic and/or other sustainable farming systems. Pest Manag. Sci., 149–157. [DOI: 10.1002/ps.820].
  • Hartz, T.K., Bottoms, T.G. (2010). Humic substances generally ineffective in improving vegetable crop nutrient uptake or productivity. HortSci., 45, 906–910.
  • van der Heijden, M.G.A., Klironomos, J.N., Ursic, M., Moutoglis, P., Streitwolf-Engel, R., Boller, T., Wiemken, A., Sanders, I.R. (1998). Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature, 396, 72–75.
  • Hildebrandt, U., Regvar, M., Bothe, H. (2007). Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry, 68, 139–146.
  • Helgason, T., Daniell, T.J., Husband, R., Fitter, A.H., Young, J.P.W. (1998). Ploughing up the wood-wide web? Nature, 394, 431.
  • Khan, A.G., Kuek, C., Chaudhry, T.M., Khoo, C.S., Hays, W.J. (2000). Role of plants. Mycorrhizae and phytochelators in heavy metal contamined land remediation. Chemisphere, 41, 197–297.
  • Khan, W., Rayirath, U. P., Subramanian, S., Jithesh, M.N., Rayorath, P., Prithiviraj, B. (2009). Seaweed extracts as biostimulants of plant growth and development. J. Plant Growth Regul., 28, 386–399.
  • Kohler, J., Caravaca, F., Roldán, A. (2009). Effect of drought on the stability of rhizosphere soil aggregates of Lactuca sativa grown in a degraded soil inoculated with PGPR and AM fungi. Appl. Soil Ecol., 42, 160–165.
  • Kohler, J., Hernández, J.A., Caravaca, F., Roldán, A. (2008). Plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in waterstressed plants. Funct. Plant Biol., 35, 141–151.
  • Koske, R.E., Gemma, J.N. (1989). A modified procedure for staining roots to detect V-A mycorrhizas. Mycol. Res., 92, 486–488.
  • Kruczyńska, D. (2002). Nowe odmiany jabłoni. Hortpress, Warszawa.
  • Kulikova, N.A., Stepanova, E.V., Koroleva, O.V. (2005). Mitigating activity of humic substances: direct influence on biota. In: Use of humic substances to remediate polluted environments: from theory to practice, I.V., Perminova et al. (ed.). Springer Netherlands. 52, 285–309.
  • Laurent, A.S., Merwin, I.A., Thies, J.E. (2008). Long-term orchard groundcover management systems affect soil microbial communities and apple replant disease severity. Plant Soil, 304, 209–225.
  • Li, Y., Chen, Y.L., Li, M., Lin, X.G., Liu, R.J. (2012). Effects of arbuscular mycorrhizal fungi communities on soil quality and the growth of cucumber seedlings in a greenhouse soil of continuously planting cucumber. Pedosphere, 22(1), 79–87.
  • Magarey, R.C., Bull, J.J., Reghenzani, J.R. (1999). The influene of vesicular arbuscular mycorrhizae (VAM) on sugarcane growth in the field. Proc. Aust. Sugar Cane Technol., 27, 282–290.
  • Magdoff, F., Weil, R.R. (2004). Soil organic matter in sustainable agriculture. CRC Press, Upper Saddle River.
  • Manici, L.M., Ciavatta, C., Kelderer, M., Erschbaumer, G. (2003). Replant problems in South Tyrol: role of fungal pathogens and microbial population in conventional and organic apple orchards. Plant Soil, 256, 315–324.
  • Mazzola, M. (1999). Transformation of soil microbial community structure and Rhizoctonia suppressive potential in response to apple roots. Phytopatology, 89, 920–927.
  • Mazzola, M., Gu, Y.H. (2000). Impact of wheat cultivation on microbial communities from replant soil and apple growth in greenhouse trials. Phytopathology, 90, 114–119.
  • Mazzola, M., Manici, L.M. (2012). Apple replant disease: Role of microbial ecology in cause and control. Ann. Rev. Phytopathol., 50, 45–65.
  • Mäder, P., Edenhofer, S., Boller, T., Wiemken, A., Niggli, U. (2000). Arbuscular mycorrhizae in a longterm field trial comparing low-input (organic, biological) and high-input (conventional) farming systems in a crop rotation. Biol. Fert. Soils, 31, 150–156.
  • Miransari, M. (2010). Contribution of arbuscular mycorrhize symbiosis to plant growth under different types of soil stress. Plant Biol., 12, 563–569.
  • Nardia, N., Pizzeghelloa, D., Muscolob, A., Vianelloc, A. (2002). Physiological effects of humic substances on higher plants. Soil Biol. Biochem., 34, 1527–1536.
  • Oehl, F., Sieverding, E., Ineichen, K., Ris, E.A., Boller, T., Wiemken, A. (2005). Community structure of arbuscular mycorrhizal fungi at different soil depths in extensively and intensively managed agroecosystems. New Phytol., 165, 273–283.
  • Oehl F., Sieverding E., Ineichen K., Mader P., Boller T., Wiemken A. (2003). Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of central Europe. Appl. Environ. Microbiol. 69, 2816–2824.
  • Otto, G. (1989). Effects of vesicular-arbuscular mycorrhizas and phosphorus on water status and growth of apple. In: Interrelationships between microorganisms and plants in soil.
  • V., Vančura, F., Kunc (eds.) Proceedings of an International Symposium, Liblice, Czechoslovakia, Jun. 22–27, 1987, 137–140.
  • Pacholak, E., Zydlik, Z., Rutkowski, K. (2009). Effect of 30-year cultivation of apple trees on chemical and biochemical conditions of soil designed for replantation. Zesz. Probl. Post. Nauk Roln., 536, 161–168.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-f47ad271-100e-49fe-ab27-546203efa9a1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.