PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 26 | 4 |

Tytuł artykułu

The bioaccumulation and migration of inorganic mercury and methylmercury in the rice plants

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In the present study, (NH₄)₂S₂O₃ extraction methods were applied to assess bioaccumulation of methylmercury (MeHg) in rice grains, and inorganic mercury (IHg) concentrations in rice leaves were analyzed during the rice growing time to access the bioaccumulation of IHg in rice leaves. The results show that the IHg concentrations in leaves increased in the rice harvest stage, indicating that the limit or no IHg was migrated to the rice grain. Also, the Hg-contaminated leaves may potentially cause the input of ‘new Hg’ into soil, leading to a vicious Hg pollution cycle in a rice paddy system. Our results indicated that MeHg concentrations in leaves could not be used to predict the MeHg bioaccumulation in rice grain. Meanwhile, MeHg transferred capability from soil to leaves decreased with time, which could be the common effect of the decreased soil MeHg bioavailability and translocation of MeHg from leaves to rice grains.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

26

Numer

4

Opis fizyczny

p.1905-1911,fig.,ref.

Twórcy

autor
  • Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd. Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Land and Resources, Shaanxi Provincial Land Consolidation Engineering Technology Research Center Xi’an city, Shaanxi province, China
autor
  • Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd. Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Land and Resources, Shaanxi Provincial Land Consolidation Engineering Technology Research Center Xi’an city, Shaanxi province, China
autor
  • PowerChina Northwest Engineering Corporation Limited. Xi’an city, Shaanxi province, China

Bibliografia

  • 1. Xinbin F., Ping L., Guangle Q., Shaofeng W., Guanghui L., Lihai S., Bo M., Hongmei J., Weiyang B., Zhonggen L. Human exposure to methylmercury through rice intake in mercury mining areas, Guizhou province, China. Environmental Science & Technology. 42 (1), 326, 2008.
  • 2. Zhang H., Feng X., Larssen T., Qiu G., Vogt R.D. In inland China, rice, rather than fish, is the major pathway for methylmercury exposure. Environmental Health Perspectives. 118 (9), 1183, 2010.
  • 3. Milena H., Natasa N., Vesna F., Vesna J., Martina L., Sonja L., Radojko J., Ingrid F., Qu L., Jadran F. Total mercury, methylmercury and selenium in mercury polluted areas in the province Guizhou, China. Science of the Total Environment. 304 (1-3), 231, 2003.
  • 4. Feng X. Mercury Pollution in the Environment. Progress in Chemistry. 21 (0203), 436, 2009.
  • 5. Guangle Q., Xinbin F., Ping L., Shaofeng W., Guanghui L., Lihai S., Xuewu F. Methylmercury accumulation in rice (Oryza sativa L.) grown at abandoned mercury mines in Guizhou, China. Journal of Agricultural & Food Chemistry. 56 (7), 2465, 2008.
  • 6. Rothenberg S.E., Feng X. Mercury cycling in a flooded rice paddy. Journal of Geophysical Research Biogeosciences. 117, 184, 2012.
  • 7. Meng M., Li B., Shao J.J., Wang T., He B., Shi J.B., Ye Z.H., Jiang G.B. Accumulation of total mercury and methylmercury in rice plants collected from different mining areas in China. Environmental Pollution. 184 (1), 179, 2014.
  • 8. Qiu G., Feng X., Wang S., Shang L. Mercury and methylmercury in riparian soil, sediments, mine-waste calcines, and moss from abandoned Hg mines in east Guizhou province, southwestern China. Applied Geochemistry. 20 (3), 627, 2005.
  • 9. Bo M., Xinbin F., Guangle Q., Peng L., Ping L., Chunxiao C., Lihai S. The process of methylmercury accumulation in rice (Oryza sativa L.). Environmental Science & Technology. 45 (7), 2711, 2011.
  • 10. Maria G., Yaodong W., Clara N. Absence of Hg transpiration by shoot after Hg uptake by roots of six terrestrial plant species. Environmental Pollution. 134 (2), 201, 2005.
  • 11. Lodenius M., Tulisalo E., Soltanpour-Gargari A. Exchange of mercury between atmosphere and vegetation under contaminated conditions. Science of the Total Environment. 304, 169, 2003.
  • 12. Meng B., Feng X., Qiu G., Wang D., Liang P., Li P., Shang L. Inorganic mercury accumulation in rice (Oryza sativa L.). Environmental Toxicology & Chemistry. 31 (9), 2093, 2012.
  • 13. Bo M., Xinbin F., Guangle Q., Yong C., Dingyong W., Ping L., Lihai S., Jonas S. Distribution patterns of inorganic mercury and methylmercury in tissues of rice (Oryza sativa L.) plants and possible bioaccumulation pathways. Journal of Agricultural & Food Chemistry. 58 (8), 4951, 2010.
  • 14. Windhammyers L., Fleck J., Eaglessmith C., Ackerman J. Mercury methylation, export and bioaccumulation in rice agriculture - model results from comparative and experimental studies in 3 regions of the California Delta, USA. In: AGU Fall Meeting Abstracts. 2013.
  • 15. Hua Z., Xinbin F., Thorj?Rn L., Lihai S., Ping L. Bioaccumulation of methylmercury versus inorganic mercury in rice (Oryza sativa L.) grain. Environmental Science & Technology. 44 (12), 4499, 2010.
  • 16. Tirol-Padre A., Tsuchiya K., Inubushi K., Ladha J.K. Enhancing Soil Quality through Residue Management in a Rice-Wheat System in Fukuoka, Japan. Soil Science & Plant Nutrition. 51 (6), 849, 2005.
  • 17. Zhu D.W., Zhong H., Zeng Q.L., Yin Y. Prediction of methylmercury accumulation in rice grains by chemical extraction methods. Environmental Pollution. 199c, 1, 2015.
  • 18. Peng X., Liu F., Wang W.X., Ye Z. Reducing total mercury and methylmercury accumulation in rice grains through water management and deliberate selection of rice cultivars. Environmental Pollution. 162 (162), 202, 2012.
  • 19. Okkenhaug G., Zhu Y.G., He J., Li X., Luo L., Mulder J. Antimony (Sb) and arsenic (As) in Sb mining impacted paddy soil from Xikuangshan, China: differences in mechanisms controlling soil sequestration and uptake in rice. Environmental Science & Technology. 46 (6), 3155, 2012.
  • 20. Huan Z., Wen-Xiong W. Controls of dissolved organic matter and chloride on mercury uptake by a marine diatom. Environmental Science & Technology. 43 (23), 8998, 2009.
  • 21. Bloom N. Determination of Picogram Levels of Methylmercury by Aqueous Phase Ethylation, Followed by Cryogenic Gas Chromatography with Cold Vapour Atomic Fluorescence Detection. Canadian Journal of Fisheries & Aquatic Sciences. 46 (7),1131, 1989.
  • 22. And C.G., Fisher N.S. Bioavailability of Sediment-Bound Methyl and Inorganic Mercury to a Marine Bivalve. Environmental Science & Technology. 31 (4), 1997.
  • 23. Ullrich S.M., Tanton T.W., Abdrashitova S.A. Mercury in the aquatic environment: a review of factors affecting methylation. Critical Reviews in Environmental Science & Technology. 31 (3), 241, 2001.
  • 24. Miskimmin B.M., Rudd J.W.M., Kelly C.A. Influence of Dissolved Organic Carbon, pH, and Microbial Respiration Rates on Mercury Methylation and Demethylation in Lake Water. Canadian Journal of Fisheries & Aquatic Sciences. 4 (49), 17, 2006.
  • 25. Zhu D., Zhong H. Potential bioavailability of mercury in humus-coated clay minerals. Journal of Environmental Sciences. 36 (10), 48, 2015.
  • 26. Rothenberg S.E., Feng X., Zhou W., Ming T., Jin B., You J. Environment and genotype controls on mercury accumulation in rice (Oryza sativa L.) cultivated along a contamination gradient in Guizhou, China. Science of the Total Environment. 426 (2), 272, 2012.
  • 27. Steffan R.J., Korthals E.T., Winfrey M.R. Effects of acidification on mercury methylation, demethylation, and volatilization in sediments from an acid-susceptible lake. Applied & Environmental Microbiology. 54 (8), 2003, 1988.
  • 28. Matilainen T., Verta M. Mercury methylation and demethylation in aerobic surface waters. Canadian Journal of Fisheries & Aquatic Sciences. 52 (8), 1597, 2011.
  • 29. Ramial P.S., Rudd J.W.M., Furutam A., Xun L. The Effect of pH on Methyl Mercury Production and Decomposition in Lake Sediments. Canadian Journal of Fisheries & Aquatic Sciences. 42 (4), 685, 1985.
  • 30. Zhou J., Liu H., Du B., Shang L., Yang J., Wang Y. Influence of soil mercury concentration and fraction on bioaccumulation process of inorganic mercury and methylmercury in rice (Oryza sativa L.). Environmental Science & Pollution Research International. 22 (8), 1, 2015.
  • 31. Ma L., Zhong H., Wu Y.G. Effects of Metal-Soil Contact Time on the Extraction of Mercury from Soils. Bulletin of Environmental Contamination & Toxicology. 94 (3), 399, 2015.
  • 32. Rothenberg S.E., Windham-Myers L., Creswell J.E. Rice methylmercury exposure and mitigation. A comprehensive review. Environmental Research. 133 (2), 407, 2014.
  • 33. Windham-Myers L., Fleck J.A., Ackerman J.T., Marvin-Dipasquale M., Stricker C.A., Heim W.A., Bachand P.A.M., Eagles-Smith C.A., Gill G., Stephenson M. Mercury cycling in agricultural and managed wetlands: a synthesis of methylmercury production, hydrologic export, and bioaccumulation from an integrated field study. Science of the Total Environment. 484 (24), 221, 2014.
  • 34. Rothenberg S.E., Feng X., Dong B., Shang L., Yin R., Yuan X. Characterization of mercury species in brown and white rice (Oryza sativa L.) grown in water-saving paddies. Environmental Pollution. 159 (5), 1283, 2011.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-f47a7085-497a-46ff-bdde-7612162bc883
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.