PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 41 | 04 |

Tytuł artykułu

Trichoderma asperellum ACCC30536 inoculation improves soil nutrition and leaf artemisinin production in Artemisia annua

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Artemisia annua L. is the main source of artemisinin, currently the most effective treatment for malaria. However, an affordable and abundant supply of artemisinin remains elusive. Trichoderma is a biocontrol agent that stimulates plant growth and defense responses, and improves soil quality. To date, relatively few studies have focused on improving leaf biomass and artemisinin production in A. annua using Trichoderma. To investigate the role of T. asperellum ACCC30536 in improving the artemisinin yield of A. annua, field-grown A. annua was inoculated with T. asperellum conidia and grown for 60 days. The results showed that leaf artemisinin concentration and dry weight were increased significantly after inoculation. The optimal inoculation dose was 200 mL of conidia suspension at 1 × 10⁷ colony-forming units (cfu)/mL, the highest artemisinin concentration was 8.83 mg/g, and the highest artemisinin production was 70.6 g on day 50. The results of qRT-PCR revealed that expression of genes encoding key enzymes for artemisinin biosynthesis, namely HMGR1, FPS, ADS, CYP71AV1, CPR, DBR, DXS1, and DXR1, was generally upregulated during days 20–50 following induction by Trichoderma. In addition, the moisture, pH stability, organic matter content, and availability of nitrogen, phosphorus, and kalium in inoculated soil were significantly improved. Thus, application of T. asperellum ACCC30536 may offer a novel approach for improving artemisinin production by upregulating the expression of key enzymes for artemisinin biosynthesis, increasing leaf yield, and improving soil fertility.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

41

Numer

04

Opis fizyczny

Article 46 [11p.], fig.,ref.

Twórcy

autor
  • College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China
autor
  • Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
autor
  • College of Life Science, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
autor
  • College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China
autor
  • College of Life Science, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
autor
  • College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China
autor
  • College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China

Bibliografia

  • Arsenault PR, Vail DR, Wobbe KK, Weathers PJ (2010) Effect of sugars on artemisinin production in Artemisia annua L.: transcription and metabolite measurements. Molecules 15(4):2302–2318
  • Boughalleb-M’Hamdi N, Salem IB, M’Hamdi M (2018) Evaluation of the efficiency of Trichoderma, Penicillium, and Aspergillus species as biological control agents against four soil-borne fungi of melon and watermelon. Egypt J Biol Pest Control 28:25. https://doi.org/10.1186/s41938-017-0010-3
  • Bryant L, Flatley B, Patole C, Brown GD, Cramer R (2015) Proteomic analysis of Artemisia annua-towards elucidating the biosynthetic pathways of the antimalarial pro-drug artemisinin. BMC Plant Biol 15:175–188. https://doi.org/10.1186/s12870-015-0565-7
  • Chen LX (2005) Soil experiment and practice course. Northeast Forestry University Press, Harbin (in Chinese)
  • Cui YQ, Ma JY, Sun W, Sun JH, Duan ZH (2015) A preliminary study of water use strategy of desert plants in Dunhuang, China. J Arid Land 7(1):73–81. https://doi.org/10.1007/s40333-014-0037-1
  • Czechowski T, Larson TR, Catania TM, Harvey D, Brown GD, Graham IA (2016) Artemisia annua mutant impaired in artemisinin synthesis demonstrates importance of nonenzymatic conversion in terpenoid metabolism. Proc Natl Acad Sci 113(52):15150–15155
  • El-Katatny MH (2010) Enzyme production and nitrogen fixation by free, immobilized and coimmobilized inoculants of Trichoderma harzianum and Azospirillum brasilense and their possible role in growth promotion of tomato. Food Technol Biotechnol 48(2):161–174
  • Ferreira JFS, Simon JE, Janick J (1997) Artemisia annua: botany, horticulture, pharmacology. Hort Res 19:319–371
  • Francesco V, Krishnapillai S, Emilio LG, Sheridan LW, Marco N, Roberta M, Nadia L, Alberto P, Michelina R, Stefania L, Gelsomina M, Matteo L (2014) Trichoderma secondary metabolites active on plants and fungal pathogens. Open Mycol J 8(5):127–139
  • Guo RT, Wang ZY, Huang Y, Fan HJ, Liu ZH (2018) Biocontrol potential of saline- or alkaline-tolerant Trichoderma asperellum mutants against three pathogenic fungi under saline or alkaline stress conditions. Braz J Microbiol 388:1–10
  • Jha P, Ram M, Khan MA, Kiran U, Abdin MZ (2011) Impact of organic manure and chemical fertilizers on artemisinin content and yield in Artemisia annua L. Ind Crops Prod 33(2):296–301
  • Jimenez J, Lei H, Steyer J-P, Houot S, Patureau D (2017) Methane production and fertilizing value of organic waste: organic matter characterization for a better prediction of valorization pathways. Biores Technol 241:1012–1021
  • Kazaz B, Webster S, Yadav P (2016) Interventions for an artemisinin-based malaria medicine supply chain. Prod Oper Manag 25(9):1576–1600. https://doi.org/10.1111/poms.12574
  • Kong P, Hong CX (2017) Biocontrol of boxwood blight by Trichoderma koningiopsis Mb2. Crop Prot 98:124–127
  • Li C, Li J, Wang G, Li X (2016) Heterologous biosynthesis of artemisinic acid in Saccharomyces cerevisiae. J Appl Microbiol 120(6):1466–1478. https://doi.org/10.1111/jam.13044
  • Li YT, Hwang SG, Huang YM, Huang CH (2018) Effects of Trichoderma asperellum on nutrient uptake and Fusarium wilt of tomato. Crop Prot 110:275–282
  • Luo SQ, Huang JG, Yuan L (2014) Nutrients and microorganisms in soils with wild Artemisia annua L. Acta Pedol Sin 51(4):868–879 (in Chinese)
  • Lv MM, Liu ZH, Wang H, Zhu GD, Yang XT, Zhang RS (2015) Effects of Trichoderma asperellum on the physical and chemical properties and nutrient components of the pot soil culturing tissue-cultured Populus davidiana × P. bolleana seedlings. Bull Bot Res 35(2):289–296 (in Chinese)
  • Mercke P, Bengtsson M, Bouwmeester HJ, Posthumus MA, Brodelius PE (2000) Molecular cloning, expression, and characterization of amorpha-4, 11-diene synthase, a key enzyme of artemisinin biosynthesis in Artemisia annua L. Arch Biochem Biophys 381:173–180. https://doi.org/10.1006/abbi.2000.1962
  • Ndoungue M, Petchayo S, Techou Z, Nana WG, Nembot C, Fontem D, Ten Hoopen GM (2018) The impact of soil treatments on black pod rot (caused by Phytophthora megakarya) of cacao in Cameroon. Biol Control 123:9–17
  • Patel S, Saraf M (2017) Biocontrol efficacy of Trichoderma asperellum MSST against tomato wilting by Fusarium oxysporum f. sp. lycopersici. Arch Phytopathol Plant Prot 50:223–230
  • Peng M, Chen M, Chen R, Lan X, Hsieh MH, Liao Z (2011) The last gene involved in the MEP pathway of Artemisia annua: cloning and characterization and functional identification. J Med Plants Res 5(2):223–230
  • Qiao Y, Miao S, Han X, Yue S, Tang C (2017) Improving soil nutrient availability increases carbon rhizodeposition under maize and soybean in Mollisols. Sci Total Environ 603:416–424
  • Shen Q, Yan TX, Fu XQ, Tang KX (2016) Transcriptional regulation of artemisinin biosynthesis in Artemisia annua L. Sci Bull 61(1):18–25. https://doi.org/10.1007/s11434-015-0983-9
  • Shin K, Diepen G, Blok W, Bruggen AHC (2017) Variability of effective microorganisms (EM) in bokashi and soil and effects on soil-borne plant pathogens. Crop Prot 99:168–176
  • Tchameni SN, Sameza ML, O’donovan A, Fokom R, Mangaptche Ngonkeu EL, Wakam Nana L, ETOA F-X, NWAGA D (2017) Antagonism of Trichoderma asperellum against Phytophthora megakarya and its potential to promote cacao growth and induce biochemical defence. Mycology 8(2):84–92. https://doi.org/10.1080/21501203.2017.1300199
  • Wang XR, Su SM, Zeng XB, Bai LY, Li LF, Duan R, Wang YN, Wu CX (2015) Inoculation with chlamydospores of Trichoderma asperellum SM-12F1 accelerated arsenic volatilization and influenced arsenic availability in soils. J Integr Agric 14(2):389–397
  • Wei SG, Ma XJ, Feng SX, Huang RS, Dong QS, Yan ZG, Huang QG (2008) Evaluation on germplasm resources of main production area of Artemisia annua in China. China J Chin Mater Med 33(3):241–244 (in Chinese)
  • Wu T, Wang YJ, Guo DJ (2012) Investigation of glandular trichome proteins in Artemisia annua L. using comparative proteomics. PloS One. https://doi.org/10.1371/journal.pone.0041822
  • Wu Q, Sun R, Ni M, Yu J, Li Y, Yu C, Dou K, Ren J, Chen J (2017) Identification of a novel fungus, Trichoderma asperellum GDFS1009, and comprehensive evaluation of its biocontrol efficacy. PloS One. https://doi.org/10.1371/journal.pone.0179957
  • Xiang L, Zhu S, Zhao T, Zhang M, Liu W, Chen M, Lan X, Liao Z (2015) Enhancement of artemisinin content and relative expression of genes of artemisinin biosynthesis in Artemisia annua by exogenous MeJA treatment. Plant Growth Regul 75(2):435–441. https://doi.org/10.1007/s10725-014-0004-z
  • Xiao L, Tan HX, Zhang L (2016) Artemisia annua glandular secretory trichomes: the biofactory of antimalarial agent artemisinin. Sci Bull 61(1):26–36. https://doi.org/10.1007/s11434-015-0980-z
  • Xue AG, Guo W, Chen YH (2017) Effect of seed treatment with novel strains of Trichoderma spp. on establishment and yield of spring wheat. Crop Prot 96:97–102
  • Yao ZH, Baloch AM, Liu ZH, Zhai TT, Jiang CY, Liu ZY, Zhang RS (2018) Cloning and characterization of an AUX/IAA gene in Populus davidiana x P. alba var. pyramidalis and the correlation between its time course expression and the levels of indole-3-acetic in saplings inoculated with trichoderma. Pak J Bot 50(1):169–177
  • Zhang RS, Zhao M, Zhou YD, Han S (2009) Artemisinin content and biomass yield of introduced Artemisia annua. Sci Silvae Sinicae 45(4):151–155 (in Chinese)
  • Zhang RS, Baloch AM, Li SH, Li SH, Liu ZH, Jiang CY, Wang H, Baloch AW, Diao GP (2018) Improvement in biomass, IAA levels and auxin signaling related gene expression in shanxin poplar seedlings (Populus davidiana x p. alba var. pyramidalis) induced by Trichoderma asperellum. Pak J Bot 50(4):1629–1636
  • Zhou LY, Yang G, Sun HF, Tang JF, Yang J, Wang YZ, Garran TA, Guo LP (2017) Effects of different doses of cadmium on secondary metabolites and gene expression in Artemisia annua L.. Front Med 11(1):137–146
  • Zhu MM, Zhang FY, Lv ZY, Shen Q, Zhang L, Lu X, Jiang WM, Fu XQ, Yan TX, Chen LX, Wang GF, Tang KX (2014) Characterization of the promoter of Artemisia annua Amorpha-4,11-diene synthase (ADS) gene using homologous and heterologous expression as well as deletion analysis. Plant Mol Biol Rep 32(2):406–418. https://doi.org/10.1007/s11105-013-0656-2

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-f41a6159-243f-4b65-8dd8-eb230230aff5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.