PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 58 | 1 |

Tytuł artykułu

Allelopathy in Solanaceae plants

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Solanaceae plants have strong allelopathic potential, and therefore the action is confirmed through: a) bioassays with liquid or various solvent extracts and residues, b) fractionation, identification, and quantification of causative allelochemicals. Most assessments of allelopathy involve bioassays of plant or soil extracts, leachates, fractions, and residues which support seed germination and seedling growth in laboratory and greenhouse experiments. Plant growth is also stimulated below the allelopathic threshold, however severe growth reductions may be observed above the threshold concentration depending on the sensitivity of the receiving species. Generally, seedling growth is more sensitive than germination, particularly root growth. Some approaches showed that field soil collected beneath donor plants significantly reduced or somewhat promoted the growth of the recipients plants. Petri dish bioassays with aqueous extracts of different parts of donor plants showed considerable phytotoxic activities in a concentration-dependent manner with leaf aqueous extracts being most dominant. Delayed seed germination and slow root growth attributable to the extracts may be baffled with diffusion effects on the rate of imbibition, delayed initiation of germination, and particularly cell elongation; the main factor that is responsible for affecting root growth before and after the tip penetrates the testa. Light and electron microscopy extract analysis at the ultrastructural level are correctly investigated. Several Solanaceae plants have allelopathic potential, and therefore the activities, kinds and quantity of allelopathic compounds differ depending on the plant species. The incorporation of allelopathic substances into agricultural management might scale back the development of pesticides and reduce environmental deterioration.

Wydawca

-

Rocznik

Tom

58

Numer

1

Opis fizyczny

p.1-7,ref.

Twórcy

autor
  • Department of Botany, Aligarh Muslim University, Aligarh, Utter Pradesh, India, 202002
  • Department of Botany, Aligarh Muslim University, Aligarh, Utter Pradesh, India, 202002

Bibliografia

  • Alshahrani T.S. 2008. Effect of aqueous extract of the invasive species tobacco (Nicotiana glauca L.) on seedlings growth of juniper (Juniperus procena L.). Emirates Journal of food and agriculture 20 (2): 10–17. DOI: https://doi.org/10.9755/ejfa.v20i2.5186
  • Altieri A.M., Liebman M. 1988. Weed management in agroecosystem. Ecological Approaches. CRC Press, Minnesota, USA, 354 pp.
  • Anaya-Lang A.L. 1989. The role the allelochemicals in the management of natural resources. Botanical Sciences 49: 85–98.
  • Bansal B.L. 1990. Allelopathic potential of Linseed on buttercup (Ranunculus arvensis L.). p. 801–805. In: “Plant Science Research in India” (M.L. Trivedi, B.S. Gill, S.S. Saini). Today and Tomorrow Printers and Publishers, New Delhi, India.
  • Baziramakenga R.S., Simard R.R., Leroux G.D. 1994. Effects of benzoic and cinnamic acids on growth, mineral composition, and chlorophyll content of soybean. Journal of Chemical Ecology 20 (11): 2821–2833. DOI: https://doi.org/10.1007/bf02098391
  • Bosch E.V.D., Ward B.G., Clarkson B.D. 2004. Woolly nightshade (Solanum mauritianum) and its allelopathic effects on New Zealand native Hebe stricta seed germination. New Zealand Plant Protection 57: 98.
  • Butnariu M. 2012. An analysis of Sorghum halepense’s behavior in presence of tropane alkaloids from Datura stramonium extracts. Chemistry Central Journal 6 (1): 75. DOI: https://doi.org/10.1186/1752-153x-6-75
  • Chandra S., Chatterjee P., Dey P., Bhattacharya S. 2012. Allelopathic effect of Ashwagandha against the germination and radicle growth of Cicer arietinum and Triticum aestivum. Pharmacognosy Research 4 (3): 166. DOI: https://doi.org/10.4103/0974-8490.99082
  • Cochran V.L., Elliott L.F., Papendick R.I. 1980. Carbon and nitrogen movement from surface-applied wheat (Triticum aestivum) straw. Soil Science Society of America Journal 44 (5): 978–982. DOI: https://doi.org/10.2136/sssaj1980.03615995004400050021x
  • Connell J.H. 1990. Apparent versus “real” competition in plants. p. 9–26. In: “Perspectives on Plant Competition” (J.B. Grace, D. Tilman, eds.). Academic Press, San Diego, USA. DOI:https://doi.org/10.1016/b978-0-12-294452-9.50006-0
  • Cruz-Ortega R., Anaya A.L., Ramos L. 1988. Effects of allelopathic compounds of corn pollen on respiration and cell division of watermelon. Journal of Chemical Ecology 14 (1): 71–86. DOI: https://doi.org/10.1007/bf01022532
  • Dakshini K.M.M. 1995. On laboratory bioassays in allelopathy. The Botanical Review 61 (1): 28-44.
  • Debnath B., Debnath A., Paul C. 2016. Allelopathy effects of invasive weed on germination and seedling growth of four widely cultivated Indian crops. International Journal of Science and Nature 7 (1): 194–198.
  • Duke S.O., Lydon J. 1987. Herbicides from natural compounds. Weed Technology 1 (2): 122–128.
  • Elakovich S.D. 1987. Sesquiterpenes as phytoalexins and allelopathic agents. Ecology and Metabolism of Plant Lipids 7: 93–108. DOI: https://doi.org/10.1021/bk-1987-0325.ch007
  • Elisante F., Ndakidemi P.A. 2014. Allelopathic effect of Datura stramonium on the survival of grass and legume species in the conservation areas. American Journal of Research Communication 2: 27–43.
  • Elisante F., Tarimo M., Ndakidemi P.A. 2013. Allelopathic effect of seed and leaf aqueous extracts of Datura stramonium on leaf chlorophyll content, shoot and root elongation of Cenchrus ciliaris and Neonotonia wightii. American Journal of Plant Sciences 4 (12): 2332–2339. DOI: https://doi.org/10.4236/ajps.2013.412289
  • Elliott L.F., Cochran V.L., Papendick R.I. 1981. Wheat residue and nitrogen placement effects on wheat growth in the greenhouse. Soil Science 131 (1): 48–52. DOI: https://doi.org/10.1097/00010694-198101000-00008
  • Fischer N.H., Williamson G.B., Weidenhamer J.D., Richardson D.R. 1994. In search of allelopathy in the Florida scrub: The role of terpenoids. Journal of Chemical Ecology 20 (6): 1355–1380. DOI: https://doi.org/10.1007/bf02059812
  • Friedman J., Ruskin E., Waller G.R. 1982. Highly potent germination inhibitors in aqueous eluate of fruits of bishop’s weed (Ammi majus L.) and avoidance of autoinhibiton. Journal of Chemical Ecology 8 (1): 55–65. DOI: https://doi.org/10.1007/bf00984005
  • Fujii Y., Parvez S.S., Parvez M.M., Ohmae Y., Iida O. 2003. Screening of 239 medicinal plant species for allelopathic activity using the sandwich method. Weed Biology and Management 3 (4): 233–241. DOI: https://doi.org/10.1046/j.1444-6162.2003.00111.x
  • Fukuhara K., Kubo I. 1991. Isolation of steroidal glycoalkaloids from Solanum incanum by two countercurrent chromatographic methods. Phytochemistry 30 (2): 685–687. DOI:https://doi.org/10.1016/0031-9422(91)83753-8
  • Fukuhara K., Kubo I. 2004. Arudonine, an allelopathic steroidal glycoalkaloid from the root bark of Solanum arundo Mattei. Phytochemistry 65 (9): 1283–1286. DOI: https://doi.org/10.1002/chin.200444207
  • Girija G., Gowri S. 2008. Allelopathic effect of Solanum nigrum on Pisum sativum, Eleusine coracana and Trigonella foenum graecum. Biomedical and Pharmacology Journal 1 (1): 185–194.
  • Holm L. 1978. Some characteristics of weed problems in two worlds. Proceedings Western Society of Weed Sciences 31: 3–12.
  • Horsley S.B. 1977. Allelopathic interference among plants. II. Physiological modes of action. p. 93–136. In: Proceedings of the 4th North American Forest Biology Workshop (H.E. Wilcox, A.F. Hamer, eds.). State University of New York, New York, USA.
  • Inderjit, Olofsdotter M. 1998. Bioassays for rice allelopathy: Some concerns. p. 45–55. In: “Allelopathy in Rice”. International Rice Research Institute, Pres Manila, Philippines, 154 pp.
  • Jabran K., Farooq M., Hussain M., Ali M. 2010. Wild oat (Avena fatua L.) and canary grass (Phalaris minor Ritz.) management through allelopathy. Journal of Plant Protection Research 50 (1): 41–44. DOI: https://doi.org/10.2478/v10045-010-0007-3
  • Javaid A., Shafique S., Shafique S. 2011. Management of Parthenium hysterophorus (Asteraceae) by Withania somnifera (Solanaceae). Natural Product Research 25 (4): 407–416. DOI: https://doi.org/10.1080/14786419.2010.483230
  • Jeronimo C.A., Borghetti F., Martins C. 2005. Allelopathic effect of Solanum lycocarpum leaf extract on protein synthesis in sesame seedlings. 4th Congress on Allelopathy. August, Ausralia, 473 pp. Available at: http://www.regional.org.au/au/allelopathy/2005/2/3/2440_borghettif.htm
  • Kaur H., Kaushik S. 2005. Cellular evidence of allelopathic interference of benzoic acid to mustard (Brassica juncea L.) seedling growth. Plant Physiology and Biochemistry 43 (1): 77–81. DOI: https://doi.org/10.1016/j.plaphy.2004.12.007
  • Khaliq A., Matloob A., Khan M.B., Tanveer A. 2013. Differential suppression of rice weeds by allelopathic plant aqueous extracts. Planta Daninha 31 (1): 21–28. DOI: https://doi.org/10.1590/s0100-83582013000100003
  • Kumari A., Kohli R.K. 1987. Autotoxicity of ragweed Parthenium (Parthenium hysterophorus). Weed Science 35 (5): 629–632.
  • Lovett J.V., Levitt J., Duffield A.M., Smith N.G. 1981. Allelopathic potential of Datura stramonium L. (Thorn-apple). Weed Research 21 (3–4): 165–170. DOI: https://doi.org/10.1111/j.1365-3180.1981.tb00112.x
  • Miller D.A. 1996. Allelopathy in forage crop systems. Agronomy Journal 88 (6): 854–859. DOI: https://doi.org/10.2134/agronj1996.00021962003600060003x
  • Molisch H. 1937. Der Einfluss einer Pflanze auf die Andere Allelopathie. Fischer, Jena, Germany. (in German)
  • Morais M.G., Silva V.D.C.B., Oliveira G.T., Ferreira J.M.S., Lima L.A.R.S. 2013. Allelopathic potential of the ripe fruits of Solanum lycocarpum A. St. Hil. (Solanaceae). Biochemistry and Biotechnology Reports 2 (4): 37–41. DOI: 10.5433/2316-5200.2013v2n2p37
  • Nekonam M.S, Razmjoo J., Kraimmojeni H., Sharifnabi B., Amini H., Bahrami F. 2014. Assessment of some medicinal plants for their allelopathic potential against redroot pigweed (Amaranthus retroflexus). Journal of Plant Protection Research 54 (1): 90–95. DOI: https://doi.org/10.2478/jppr-2014-0014
  • Pacanoski Z., Velkosa V., Tyr S., Veres T. 2014. Allelopathic potential of Jimsonweed on the early growth of maize (Zea mays L.) and sunflower (Helianthus annuus L.). Journal of Central European Agriculture 15 (3): 198–208. DOI: https://doi.org/10.5513/jcea01/15.3.1474
  • Parr A.J., Payne J., Eagles J., Chapman B.T., Robins R.J., Rhodes M.J. 1990. Variation in tropane alkaloid accumulation within the Solanaceae and strategies for its exploitation. Phytochemistry 29 (8): 2545–2550. DOI: https://doi.org/10.1016/0031-9422(90)85185-i
  • Preissel U., Preissel H.G. 2002. Brugmansia and Datura. Angel’s Trumpets and Thorn Apples. Firefly Books, New York, USA, 144 pp.
  • Ramona S., Alin C., Maria V.A., Levente M., Dan M., Ioana G. 2016. Allelopathic effect of aqueous extracts from Datura stramonium on germination and plant growth of maize plants. Abstracts/Journal of Biotechnology 231 (4): S89. DOI: https://doi.org/10.1016/j.jbiotec.2016.05.316
  • Rice E.L. 2012. Allelopathy. 2nd ed. Academic Press, New York, 368 pp.
  • Sharma M., Kaur R., Puri S. 2017. Bio-herbicidal efficiency of Withania somnifera against important Himalayan weeds. International Journal of Pharmacy and Pharmaceutical Sciences 9 (3): 88–97. DOI: https://doi.org/10.22159/ijpps.2017v9i3.14740
  • Singh A., Singh D., Singh N.B. 2009. Allelochemical stress produced by aqueous leachate of Nicotiana plumbaginifolia Viv. Plant Growth Regulation 58 (2): 163–171. DOI: https://doi.org/10.1007/s10725-009-9364-1
  • Singh A., Singh D., Singh N.B. 2015. Allelopathic activity of Nicotiana plumbaginifolia at various phenological stages on sunflower. Allelopathy Journal 36 (2): 315–325.
  • Solomon B.P. 1983. Autoallelopathy in Solanum carolinense: reversible delayed germination. American Midland Naturalist 412–418.
  • Vaccarini C.E., Bonetto G.M. 2000. Selective phytotoxic activity of withanolides from Iochroma australe to Crop and Weed Species. Journal of Chemical Ecology 26 (9): 2187–2196. DOI: https://doi.org/10.1023/A:1005576617857

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-f412c007-d4d2-4249-b723-f87a088f051f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.