PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 21 | 1 |

Tytuł artykułu

Effect of compost on the accumulation of heavy metals in fruit of oilseed pumpkin (Cucurbita pepo L. var. styriaca)

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
While it is true that heavy metals accumulate in soil easily, their removal is difficult. The organic fraction of municipal solid waste can be recycled into compost, although frequent application of biowaste may lead to the accumulation of heavy metals in soil. There is no deep-rooted tradition in Lithuania to make and use various biowaste composts, including the ones produced from municipal waste. The objective of this study has been to compare the accumulation of heavy metals in different parts of oilseed pumpkin fruit depending on the chemical composition of the compost the pumpkin plants had been supplied. The content of heavy metals (HM) was determined in the soil before the plant-growing experiment, and in biowaste composts of different origin. Green waste (GW) and municipal solid waste (MSW) composts were applied to soil as fertiliser. Heavy metal concentrations in the skin, flesh and seeds of the analysed pumpkin fruits did not exceed the maximum permissible concentrations established by the EU norms. Seeds of the investigated pumpkin cultivar Olivia are more sensitive to the effect of heavy metal accumulation than the other morphological fruit parts (skin and flesh). The highest amounts of the investigated heavy metals, except Cr, were determined in the seeds, while the lowest ones, except Cu, in the flesh of oilseed pumpkin fruits. The amount of heavy metals in pumpkin biomass was not directly related to their concentrations in the soil, which proves the fact that the transfer of heavy metals from soil to plant is determined primarily by metal bioavailability and by a plant species.

Wydawca

-

Rocznik

Tom

21

Numer

1

Opis fizyczny

p.21-31,ref.

Twórcy

  • Agriculture and Food Sciences Institute, Aleksandras Stulginskis University, Akademija, Lithuania
autor
  • Warsaw University of Life Sciences – SGGW, Warsaw, Poland
autor
  • Agriculture and Food Sciences Institute, Aleksandras Stulginskis University, Studentu str.11, LT-53361 Akademija, Kauno r.Kaunas - Akademija, Lithuania
  • Agriculture and Food Sciences Institute, Aleksandras Stulginskis University, Akademija, Lithuania
autor
  • Lithuanian Research Centre for Agriculture and Forestry, Lithuania

Bibliografia

  • An Y., Kim Y., Kwon Т., Jeong S. 2004. Combined effect of copper, cadmium, and lead upon Cucumis sativus growth and bioaccumulation. Sci Total Environ., 326(1-3): 85-93.
  • Athah R., Ahmad M. 2002. Heavy metal toxicity effect on plant growth and metal uptake by wheat, and on free living Azotobacter. Water Air Soil Pollut., 138: 165-180.
  • Badr S.E.A., Shaaban M., Elkholy Y.M., Helal M.H., Hamza A.S., Masoud M.S., El Safty M.M. 2010. Chemical composition and biological activity of ripe pumpkin fruits (Cucurbita pepo L.) cultivated in Egyptian habitats. Natural Product Research, 1-16.
  • Beyersmann D., Hartwig A. 2008. Carcinogenic metal compounds: recent insights into molecular and cellular mechanisms. Arch. Toxicol., 82: 493-512. DOI: 10.1007/s00204-008-0313-y
  • Commission Regulation (EC). 2006. Setting maximum levels for certain contaminants in foodstuffs. Commission Regulation (EC), 1881/2006.
  • Danilčenko H., Jariene E., Gajewski M., Cerniauskiene J., Kulaitiene J., Sawicka B., Alekna-Vičien E P. 2011. Accumulation of elements in some organically grown alternative horticultural crops in Lithuania. Acta Sci. Pol. Hortoru., 10(2): 23-31.
  • Davies B. E., White H.M. 1981. Trace elements in vegetables grown on soils contaminated by base metal mining. J. Plant. Nutr., 3: 387-396.
  • Directive 2006/ 7/EC Of The European Parliament And Of The Council Of 15 February 2006 concerning the management of bathing water quality and repealing Directive 76/160/EEC. Official Journal of the European Union, L64, 4.3.2006, 52-59. DOI: 10.1016/S1093-0191(02)00135-1
  • Georgieva V., Tasev Ch., Sengalevitch G. 1997. Growth, yield, lead, zinc and cadmium content of radish, pea and pepper plants as influenced by level of single and multiple contamination of soil. III. Cadmium. Bulg. J. Plant Physiol., 23(1-2): 12-23.
  • Ghaly A.E., Alkoaik F.N. 2010. Effect of municipal solid waste compost on the growth and production of vegetable crops. Am. J. Agric. Biol. Sci., 3: 274-281.
  • Jariene E., Danilcenko H., Jeznach M. 2015. Heavy metal contamination of plant raw material intended for food. Fresen. Environ. Bull., 24(1A): 224-227.
  • LST ISO 751:2000. Fruit and vegetable products. Determination of water-insoluble solids.
  • LST EN 15621:2012. Animal feeding stuffs. Determination of calcium, sodium, phosphorus, magnesium, potassium, sulphur, iron, zinc, copper, manganese and cobalt after pressure digestion by ICP-AES. CEN/TC 327.
  • Khan S., Farooq R., Shahbaz S., Khan M., Sadique M. 2009. Health risk assessment of heavy metals for population via consumption of vegetables. World Appl. Sci. J., 6(12): 1602-1606.
  • Mccall K.A., Huang Ch., Fierke C.A. 2000. Function and mechanism of zinc metalloenzymes. J. Nutr., 130: 1437-1446.
  • Nadgórska-Socha A., Kafel A., Kandziora-Ciupa M., Gospodarek J., Zawisza-Raszka A. 2013. Accumulation of heavy metals and antioxidant responses in Vicia faba plants grown on monometallic contaminated soil. Environ. Sci. Pollut. Res., 20:1124-1134. DOI: 10.1007/ s11356--012-1191-7
  • Nield H., Lott J.N.A. 1989. Distribution of minerals within different regions of Cucurbita maxima. Comm. Soil Sci. Plant Anal., 11-12:1085-1100.
  • Üvca A., Elteren J., Falnoga I., Šelih V. 2011. Speciation of zinc in pumpkin seeds and degradation of its species in the human digestive tract. Food Chem., 128(4): 839-846.
  • Rout G.R., Das P. 2003. Effect of metal toxicity on plant growth and metabolism: I. Zinc. Agronomie, 23: 3-11.
  • Sądej W., Namiütkü A. 2010. Content of zinc in plants fertilized with municipal solid waste and urban green waste compost. J. Elementol., 15(4): 679-692.
  • Sekler I., Sensi S.L., Heeshfinkel M., Silverman W.F. 2007. Mechanism and regulation of cellular zinc transport. Mol. Med., 13: 337-343.
  • Souci S.W., Fachmann W., Kraut H. 1994. Food composition and nutrition tables. Stuttgart, Germany, 728-729.
  • Tran T.A., Popova L.P. 2013. Functions and toxicity of cadmium in plants: recent advances/and future prospects. Turk. J. Bot., 37: 1-13. DOI: 10.3906/bot-1112-16
  • Vig K., Megharaj M., Sethunathan N., Naidu R. 2003. Bioavailability and toxicity of cadmium to microorganisms and their activities in soil: a review. Adv. Environ. Res., 8: 121-135.
  • Vulkan R., Mingelgrin U., Ben-Asher J., Frenkel H. 2002. Copper and zinc speciation in the solution of a soil-sludge mixture. J. Environ. Qual., 31: 193-203.
  • Waalkes M.P. 2003. Cadmium carcinogenesis. Mutat. Res., 533: 107-120. DOI: 10.1016/ j.mrfm-mm.2003.07.011
  • Wyszkowska J., Borowik A., Kucharski M., Kucharski J. 2013. Effect of cadmium, copper and zinc on plants, soil microorganisms and soil enzymes. Pol. J. Environ. Stud., 771-773. DOI: 10.5601/jelem.2013.18.4.455

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-f3de17a7-5b34-48a3-8443-70d1d93a8d22
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.