PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 61 | 3 |

Tytuł artykułu

Bacterial biofilms on food contact surfaces - a review

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This review will discuss some of the basic concepts concerning biofi lm formation, development and control in the food industry. Biofi lm formation process on food contact surfaces can have a detrimental effect on the microbial status of food. The presence of biofi lm on abiotic materials can contaminate the product through direct contact. As a consequence, food spoilage is likely to occur that may lead to reduced shelf life and increased risk of food poisoning from pathogens. Bacteria colonizing food processing surfaces are extremely diffi cult to eradicate. Biofi lms can tolerate antimicrobial agents at concentrations of 10–1000 times that needed to inactivate genetically equivalent planktonic bacteria. A better understanding of bacterial adhesion process is needed for the production of microbiologically-safe and good-quality products in the food industry.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

61

Numer

3

Opis fizyczny

p.173-180,fig.,ref.

Twórcy

autor
  • Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627 Poznan, Poland
autor

Bibliografia

  • 1. Aminov R.I., A brief history of the antibiotic era: lessons learned and challenges for the future. Front. Microbiol., 2010, 1, 1–7.
  • 2. Anderl J.N., Franklin M.J., Stewart P.S., Role of antibiotic penetration limitation in Klebsiella pneumonia biofi lm resistance to ampicillin and ciprofl oxacin. Antimicrob. Agents Chemother., 2000, 44, 1818–1824.
  • 3. Applegate D.H., Bryers J.D., Effects of carbon and oxygen limitation and calcium concentrations on biofi lm recovery processes. Biotechnol. Bioeng., 1991, 37, 17–25.
  • 4. Baker J.H., Factors affecting the bacterial colonization of various surfaces in a river. Can. J. Microbiol., 1984, 30, 511–515.
  • 5. Barnes L.-M., Lo M.F., Adams M.R., Chamberlain A.H.L., Effect of milk proteins on adhesion of bacteria to stainless steel surfaces. Appl. Environ. Microbiol., 1999, 65, 4543–4548.
  • 6. Benito Y., Pin C., Marin M.L, Garcia M.L., Selgas M.D., Casas C., Cell surface hydrophobicity and attachment of pathogenic and spoilage bacteria to meat surfaces. Meat Sci., 1997, 45, 419–425.
  • 7. Bogusławska-Wąs E., Lisiecki S., Drozdowska A., Ilczuk K., ffect of biofi lm formation by Pseudomonas aeruginosa on gas permeability of food wrapping foils. Pol. J. Food Nutr. Sci., 2007, 57, 167–172.
  • 8. Bos R., Van der Mei H.C., Gold J., Busscher H.J., Retention of bacteria on a substratum surface with micro-patterned hydrophobicity. FEMS Microbiol. Lett., 2000, 189, 311–315.
  • 9. Bower C.K., Daeschel M.A., McGuire J., Protein antimicrobial barriers to bacterial adhesion. J. Dairy Sci., 1998, 81, 2771– –2778.
  • 10. Bower C.K., McGuire J., Daeschel M.A., The adhesion and detachment of bacteria and spores on food-contact surfaces. Trends Food Sci. Technol., 1996, 7, 152–157.
  • 11. Branda S.S., Vik A., Friedman L., Kolter R., Biofi lm: the matrix revisited. Trends Microbiol., 2005, 13, 20–26.
  • 12. Bryan F.L., Hazard Analysis Critical Control Point (HACCP) systems for retail food and restaurant operations. J. Food Prot., 1990, 53, 978–983.
  • 13. Burfoot D., Middleton K.E., Holah J.T., Removal of biofi lms and stubborn soil by pressure washing. Trends Food Sci. Technol., 2009, 20, S45-S47.
  • 14. Busalmen J.P., de Sanchez S.R., Infl uence of pH and ionic strength on adhesion of a wild strain of Pseudomonas sp. to titanium. J. Ind. Microbiol. Biotechnol., 2001, 26, 303–308.
  • 15. Cabanes D., Dehoux P., Dussurget O., Frangeul L., Cossart P., Surface proteins and the pathogenic potential of Listeria monocytogenes. Trends Microbiol., 2002, 10, 238–245.
  • 16. Carpentier B., Cerf O., Biofi lms and their consequences with particular reference to hygiene in the food industry. J. Appl. Bacteriol., 1993, 75, 499–511.
  • 17. Caubet R., Pedarros-Caubert F., Chu M., Freye E., de Belem- Rodrigues M., Moreau J.M., Ellison W.J., A radio frequency electric current enhances antibiotic effi cacy against bacterial biofi lms. Antimicrob. Agents Chemother., 2004, 48, 4662–4664.
  • 18. Chmielewski R.A.N., Frank J.T., Biofi lm formation ad control in food processing facilities. Com. Rev. Food Sci. Food Safety., 2003, 2, 22–32.
  • 19. Costerton J.W., Introduction to biofi lm. Int. J. Antimicrob. Agents, 1999, 11, 217–221.
  • 20. Costerton J.W., Lewandowski Z., Caldwell D.E., Korber D.R., Lappin-Scott H.M., Microbial biofi lms. Ann. Rev. Microbiol., 1995, 49, 711–745.
  • 21. Cunliffe D., Smart C.A., Alexander C., Vulfson E.N., Bacterial adhesion at synthetic surfaces. Appl. Environ. Microbiol., 1999, 65, 4995–5002.
  • 22. Czaczyk K., Białas W., Myszka K., Cell surface hydrophobicity of Bacillus spp. as a function of nutrient supply and lipopeptides biosynthesis and its role in adhesion. Pol. J. Microbiol., 2008, 57, 313–319.
  • 23. Czaczyk K., Myszka K., Biosynthesis of extracellular polymeric substances (EPS) and its role in microbial biofi lm formation. Pol. J. Environm. Stud., 2007, 16, 799–806.
  • 24. Davies D.G., Parsek M.R., Pearson J.P., Iglewski B.H., Costerton J.W., Greenberg E.P., The involvement of cell-to-cell signals in the development of a bacterial biofi lm. Science, 1998, 280, 295–298.
  • 25. De Beer D., Srinivasan R., Stewart P.S., Direct measurement of chlorine penetration into biofi lms during disinfection. Appl. Environ. Microbiol. 1994, 60, 4339–4344.
  • 26. De Kievit T.R., Parkins M.D., Gillis R.J., Srikumar H., Ceri K., Poole K., Iglewski B.H., Storey D.G., Multidrug effl ux pumps: expression pattern and contribution to antibiotic resistance in Pseudomonas aeruginosa biofi lms. Antimicrob. Agents Chemother., 2001, 45, 1761–1770.
  • 27. Donian R.M., Biofi lms: microbial life on surfaces. Emerg. Infect. Dis., 2002, 8, 881–890.
  • 28. Drenkard E., Antimicrobial resistance of Pseudomonas aeruginosa biofi lms. Microb. Infect., 2003, 5, 1213–1219.
  • 29. Dunne W.M., Bacterial adhesion: seen any good biofi lms lately? Clin. Microbiol. Rev., 2002, 15, 155–166.
  • 30. Dunsmore D.G., Twomey A., Whittlestone W.G., Morgan H.W., Design and performance of systems for cleaning product-contact surfaces of food equipment: a review. J. Food Prot., 1981, 44, 220–240.
  • 31. Faille C., Jullien C., Fontaine F., Bellon-Fontaine M.N., Slomianny C., Benezech T., Adhesion of Bacillus spores and Escherichia coli cells to inert surface: role of surface hydrophobicity. Can. J. Microbiol., 2002, 48, 728–738.
  • 32. Fleming H.C., Wingender J., Relevance of microbial extracellular polymeric substances (EPSs) – Part I: Structural and ecological aspects. Water Sci. Technol., 2001, 43, 1–8.
  • 33. Flint S.H., Brooks J.D., Bremer P.J., The infl uence of cell surface properties of thermophilic streptococci on attachment to stainless steel. J. Appl. Microbiol., 1997, 83, 508–517.
  • 34. Fuster-Valls N., Hernández-Herrero M., Marín-de-Mateo M., Rodríguez- Jerez J.J., Effect of different environmental conditions on the bacteria survival on stainless steel surface. Food Contr., 2008, 19, 308–314.
  • 35. Gelians P., Goulet J., Tastayre G.M., Picard G.A., Effect of temperature and contact time on the activity of 8 disinfectans – a classifi cation. J. Food Prot., 1984, 47, 841–847.
  • 36. González J.E., Keshavan N.D., Messing with bacterial quorum sensing. Microbiol. Mol. Biol. Rev. 2006, 70, 859–875.
  • 37. Gu J.-D., Belay B., Mitchell R., Protection of catheter surfaces from adhesion of Pseudomonas aeruginosa by a combination of silver ions and lectins. World J. Microbiol. Biotechnol., 2001, 17, 173–179.
  • 38. Gunduz G.T., Tuncel G., Biofi lm formation in an ice cream plant. Antonie van Leeuwenhoek., 2006, 89, 329–336.
  • 39. Harkonen P., Salo S., Mattia-Sanholm T., Writanen G., Allison D.G., Gilbert P., Development of a simple in vitro test system for the disinfection of bacterial biofi lm. Water Sci. Technol., 1999, 39, 219–225.
  • 40. Havelaar A.H., Application of HACCP to drinking water supply. Food Contr., 1994, 5, 145–152.
  • 41. Herald P.J., Zottola E.A., Attachment of Listeria monocytogenes to stainless steel surface at various temperatures and pH values. J. Food Sci., 1988b, 53, 1549–1562.
  • 42. Herald P.J., Zottola E.A., Scanning electron microscopic examination of Yersinia enterocolitica attached to stainless steel at elevated temperature and pH value. J. Food Sci., 1988a, 51, 445–448.
  • 43. Hood S.K., Zottola E.A., Biofi lms in food processing. Food Contr., 1995, 6, 9–18.
  • 44. Hood S.K., Zottola E.A., Isolation and identifi cation of adherent gram-negative microorganisms from four meat-processing facilities. J. Food Sci., 1997, 60, 1135–1138.
  • 45. Howell D., Behrends B., A review of surface roughness in antifouling coatings illustrating the importance of cut off length. Biofouling, 2006, 22, 401–410.
  • 46. Ito A., Toniuchi A., May T., Kawata K., Okabe S., Increased antibiotic resistance of Escherichia coli in mature biofi lms. Appl. Environ. Microbiol., 2009, 75, 4093–4100.
  • 47. Jefferson K.K., What drives bacteria to produce biofi lm? FEMS Microbiol. Lett., 2004, 236, 163–173.
  • 48. Jones C.R., Adams M.R., Zhdan P.A., Chamberlain A.H.L., The role of surface physicochemical properties in determining the distribution of the autochthonous microfl ora in mineral water bottles. J. Appl. Microbiol., 1999, 86, 917–927.
  • 49. Jucker B.A., Harms H., Zehnder A.J.B., Adhesion of the positively charged bacterium Stenotrophonmonas (Xanthomonas) maltophilia 70401 to glass and Tefl on. J. Bacteriol., 1996, 178, 5472–5479.
  • 50. Kim H., Ryc J.-H., Beuchat C.R., Attachment of and biofi lm formation by Enterobacter sakazakii on stainless steel and enteral feeding tubes. Appl. Environ. Microbiol., 2006, 72, 5846–5856.
  • 51. Kim K.Y., Frank J.F., Effect of nutrients on biofi lm formation by Listaria monocytogenes on stainless steel. J. Food Prot., 1995, 58, 24–28.
  • 52. Kumar C.G., Anand S.K., Signifi cance of microbial biofi lms in food industry: a review. Int. J. Food Microbiol., 1998, 42, 9–27. 53. Langille S.E., Geesey G.G., Weiner R.M., Polysaccharide – specific probes inhibit adhesion of Hyphomonas rosenbergii strain VP-6 to hydrophilic surfaces. J. Ind. Microbol. Biotechnol., 2000, 25, 81–85.
  • 54. Le Magrex- Debar E., Lemoine J., Gellé M.P., Jaqueline L.F., Choisy C., Evaluation of biohazards in dehydrated biofi lms on foodstuff packaging. Int. J. Food Microbiol., 2000, 5, 239–243.
  • 55. Lindsay D., Brözel V.S., Mostert J.F., von Holy A., Physiology of diary-associated Bacillus spp. over a wide pH range. Int. J. Food. Microbiol., 2000, 54, 49–62.
  • 56. Liu Y., Tay J.H., Detachment forces and their infl uence on the structure and metabolic behavior of biofi lms. World J. Microbiol. Biotechnol., 2001, 17, 111–117.
  • 57. Liu Y., Yang S.F., Li Y., Xu H., Qin L., Tay J.H., The infl uence of cell and substratum surface hydrophobicities on microbial attachment. J. Biotechnol., 2004, 110, 251–256.
  • 58. Liu Y., Zhao Q., Infl uence of surface energy of modifi ed surfaces on bacterial adhesion. Biophysic. Chem., 2005, 117, 39–45.
  • 59. Marshall K.C., Biofi lms: on overview of bacterial adhesion, activity, and control of surfaces. ASM News, 1992, 58, 202–207.
  • 60. Marshall K.C., Stout R., Mitchell R., Mechanism of the initial events in the sorption of marine bacteria to surfaces. J. Gen. Microbiol., 1971, 68, 337–348.
  • 61. McCarthy S.A., Attachment of Listeria monocytogenes to chitin and resistance to biocides. Food Technol., 1992, 46, 84–88.
  • 62. McDonell C., Russel A.D., Antiseptic and disinfectants: activity, action and resistance. Clin. Microbiol. Rev., 1999, 12, 147–179.
  • 63. McEldowney S., Fletcher M., Adhesion of bacteria from mixed cell suspension to solid surfaces. Arch. Microbiol., 1987, 148, 57–62.
  • 64. McEldowney S., Fletcher M., Variability of the infl uence of physicochemical factors affecting bacterial adhesion to polystyrene substrata. Appl. Environ. Microbiol., 1986, 52, 460–465.
  • 65. McGuire J., Swartzel K.R., The infl uence of solid surface energetic on macromolecular adsorption from milk. J. Food Proc. Preserv., 1989, 13, 145–160.
  • 66. Miron J., Ben-Ghedalia D., Morrison M., Adhesion mechanisms of rumen cellulolytic bacteria. J. Dairy Sci., 2001, 84, 1294–1309.
  • 67. Mitik-Dineva N., Wang J., Mocanascu C.R., Stoddart P.R., Craw ford R.J., Ivanova E.P., Impact of nano-topography on bacterial attachment. Biotechnol. J., 2008, 3, 536–544.
  • 68. Mitik-Dineva N., Wang J., Truong V.K., Stoddart P.R., Malherbe F., Crawford R.J., Ivanova E.P., Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus attachment patterns on glass surfaces with nanoscale roughness. Curr. Microbiol., 2009, 58, 268–273.
  • 69. Mittelman M.W., Structure and functional characteristics of bacterial biofi lms in fl uid processing operations. J. Dairy Sci., 1998, 81, 2760–2764.
  • 70. Monsan P., Bozonnet S., Albenne C., Joucla G., Willemot R.M., Remaud-Simeon M., Homopolysaccharides from lactic acid bacteria. Int. Dairy J., 2001, 11, 675–685.
  • 71. Myszka K., Czaczyk K., Characterization of adhesive exopolysaccharide (EPS) produced by Pseudomonas aeruginosa under starvation conditions. Curr. Microbiol., 2009, 58, 541–546.
  • 72. Myszka K., Czaczyk K., Schmidt M.T., Olejnik A.M., Cell surface properties as factors involved in Proteus vulgaris adhesion to stainless steel under starvation conditions. World J. Microbiol. Biotechnol., 2007, 23, 1605–1612.
  • 73. Pereni C.I., Zhao Q., Liu Y., Abel E., Surface free energy effect on bacterial retention. Coll. Surfaces, 2006, 48, 143–147.
  • 74. Pontefract R.D., Bacterial adherence: its consequences in food processing. Can. Inst. Sci. Technol. J., 1991, 24, 113–117.
  • 75. Poulsen L.V., Microbial biofi lm in food processing. Leb.-Wiss. Technol., 1999, 32, 321–326.
  • 76. Prigent-Comabaret C., Prensier G., Le Thi T.T., Vidal O., Lejeuene P., Dorel C., Development pathway for biofi lm formation in curli-producing Escherichia coli stains: role of fl agella, curli and cloanic acid. Environm. Microiol., 2000, 2, 450–464.
  • 77. Qian Z., Sagers R.D., Pitt W.G., Investigation of the mechanism of the bioacoustic effect. J. Biomed Mat. Res., 1999, 44, 198–205.
  • 78. Rashid M.H., Rao N.N., Kornberg A., Inorganic polyphosphate is required for motility of bacterial pathogens. J. Bacteriol., 2000, 182, 225–227.
  • 79. Ronner A., Wong A., Biofi lm development and sanitizer inactivation of Listeria monocytogenes and Salmonella typhimurium on stainless steel and buna-N rubber. J. Food Prot., 1993, 56, 750–780.
  • 80. Samrakandi M.M., Roques C., Michael G., Infl uence of tropic conditions on exopolysaccharide production: bacterial biofi lm susceptibility to chlorine and monochloramine. Can. J. Microbiol., 1997, 43, 751–758.
  • 81. Sanin S.L., Sanin F.D., Bryers J.D., Effect of starvation on the adhesive properties of xenobiotic degrading bacteria. Process Biochem., 2003, 38, 909–914.
  • 82. Scardino A.J., Harvey E., De Nys R., Testing attachment point theory: diatom attachment microtextured polyimide biomimics. Biofouling, 2006, 22, 55–60.
  • 83. Schembri M.A., Hjerrild L., Gjermansen M., Klemm P., Differential expression of the Escherichia coli autoaggregation factor antigen 43. J. Bacteriol., 2003, 185, 2236–2242.
  • 84. Shi X., Zhu X., Biofi lm formation and food safety in food industries. Trends Food Sci. Technol., 2009, 20, 407–413.
  • 85. Shu C.-H., Lung M.-Y., Effect of pH on the production and molecular weight distribution of exopolysaccharide by Antrodia camphorate in batch cultures. Process Biochem., 2004, 39, 931–937.
  • 86. Silvestry-Rodriguez N., Bright K.R., Slack D.C., Uhlmann D.R., Gerba C.P., Silver as a residual disinfectant to prevent biofi lm formation in water distribution systems. Appl. Environ. Microbiol., 2008, 74, 1639–1641.
  • 87. Stewart P.S., Mechanisms of antibiotic resistance in bacterial biofi lms. Int. J. Med. Microbiol., 2002, 292, 107–113. 88. Suci P.A., Mittelman M.W., Yu F.P., Geesey G.G., Investigation of ciprofl oxacin penetration into Pseudomonas aeruginosa biofi lms. Antimicrob. Agents Chemother., 1994, 38, 2125–2133.
  • 89. Sutherland I.W., Biofi lm exopolysaccharides: a strong and sticky framework. Microbiology, 2001, 147, 3–9.
  • 90. Ton-That H., Marraffi ni L.A., Schneewind O., Protein sorting to the cell wall envelope of Gram-positive bacteria. Biochim. Biophys. Acta, 2004, 1694, 269–278.
  • 91. Tuomola E.M., Ouwehand A.C., Salminen S.J., Chemical, physical and enzymatic pre-treatments of probiotic lactobacilli alter their adhesion to human intestinal mucus glycoproteins. Int. J. Food Microbiol., 2000, 60, 75–81.
  • 92. van Houdt R., Michiels C.W., Role of bacterial cell surface structures in Escherichia coli biofi lm formation. Res. Microbiol., 2005, 156, 626–633.
  • 93. Vuong C., Otto M., Staphylococcus epidermidis infections. Microb. Infection, 2002, 4, 481–489.
  • 94. Wirtanen G., Matilla-Sandholm T., Epifl uorescence image analysis and cultivation of foodborne biofi lm bacteria grown on stainless steel surfaces. J. Food Prot., 1993, 56, 678–683.
  • 95. Xu K.D., McFeters G.A., Stewart P.S., Biofi lm resistance to antimicrobial agents. Microbiology, 2000, 146, 547–549.
  • 96. Zeraik A.E., Nitschke M., Biosurfactants as agents to reduce adhesion of pathogenic bacteria to polystyrene surfaces: effect of temperature and hydrophobicity. Curr. Microbiol., 2010, 61, 554–559.
  • 97. Zgurskaya H.I., Nikaido H., Multidrug resistance mechanisms: drug effl ux across two membranes. Mol. Microbiol., 2000, 37, 219–225.
  • 98. Zhang L., Mah T.-F., Involvement of a novel effl ux system in biofilm-specifi c resistance to antibiotics. J. Bacteriol., 2008, 190, 4447–4452.
  • 99. Zottola E.A., Scientifi c status, summary, Microbial attachment and biofi lm formation, a new problem for food industry. Food Technol., 1994, 48, 107–114.

Uwagi

PL
Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-f3ac9452-07f1-4ebb-b22e-fe660a1911d9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.