PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 27 | 6 |

Tytuł artykułu

Production of cellulases by Bacillus cellulosilyticus using lignocellulosic material

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The enzyme cellulase, a multi enzyme complex made up of several proteins, catalyses the conversion of cellulose to glucose in an enzymatic hydrolysis. In this study biomass alkali-pretreatment followed by enzymatic hydrolysis was carried out using crude cellulase enzyme produced from screened bacillus strain (Bacillus cellulosilyticus) having 1,998.79 IU/ml/min CMCase and 1,621.16 IU/ml/min FPase enzyme activity. The production of cellulase enzyme using an economical medium has been a significant achievement in the field of industrial biotechnology. The maximum yield of sugars in the form of total sugars (179.84±0.2 mg/ml), reducing sugars (126.72±0.1 mg/ml), and glucose (105.40±0.1 mg/ml) was achieved at 48 h incubation time, 50ºC, 5 pH, 6% enzyme concentration, 4% substrate loading, and PEG 3350 as a surfactant.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

27

Numer

6

Opis fizyczny

p.2659-2667,fig.,ref.

Twórcy

autor
  • College of Earth and Environmental Sciences, (CEES) University of Punjab, Quaid-e-Azam campus, Lahore
autor
  • College of Earth and Environmental Sciences, (CEES) University of Punjab, Quaid-e-Azam campus, Lahore
autor
  • College of Earth and Environmental Sciences, (CEES) University of Punjab, Quaid-e-Azam campus, Lahore
autor
  • College of Earth and Environmental Sciences, (CEES) University of Punjab, Quaid-e-Azam campus, Lahore
autor
  • PCSIR Laboratories, Lahore
autor
  • College of Earth and Environmental Sciences, (CEES) University of Punjab, Quaid-e-Azam campus, Lahore
autor
  • College of Earth and Environmental Sciences, (CEES) University of Punjab, Quaid-e-Azam campus, Lahore
autor
  • College of Earth and Environmental Sciences, (CEES) University of Punjab, Quaid-e-Azam campus, Lahore

Bibliografia

  • 1. BHAT M.K. Cellulases and related enzymes in biotechnology. Biotech. Adv. 18, 355, 2000.
  • 2. ARIFFIN H., ABDULLAH N., KALSOM MSU., SHIRAI Y., HASSAN M.A. Production and Characterization of Cellulase by Bacillus Pumilus EB3. Int. J. Eng. Technol. 3, 47, 2006.
  • 3. DEKA D., BHARGAVI P., SHARMA A., GOYAL D., JAWED M., GOYAL A. Enhancement of Cellulase Activity from a New Strain of Bacillus subtilis by Medium Optimization and Analysis with Various Cellulosic Substrates. Enz. res. 151656, 2011.
  • 4. PRABHAVATH N.M., AMARESH Y.S., NAIK M.K., MALLESH S.B., KUCHANUR P.H. Study of different temperature levels on radial growth and dry mycelial weight of Trichoderma spp. isolated from red gram based conservation agriculture ecosystem. International Journal of Plant Protection. 7 (2), 424, 2014.
  • 5. RATHOD M.G., PATHAK A.P. Wealth from waste: Optimized alkaline protease production from agroindustrial residues by Bacillus alcalophilus LW8 and its biotechnological applications. Journal of Taibah University for Science. 8 (4), 307, 2014.
  • 6. NOGI Y., TAKAMI H., HORIKOSHI K. Characterization of alkaliphilic Bacillus strains used in industry: proposal of five novel species. Int. J. Sys. Evo. Microbiol. 55, 2309, 2005.
  • 7. SELVI V.A., BANERJEE R., RAM L.C., SINGH G. Biodepolymerization of low rank Indian coal. World J. Microbiol. Biotechno. 25, 713, 2009.
  • 8. MOSIER N., WYMAN C., DALE C., ELANDER R., LEE Y.Y., HOLTZAPPLE M., LADISCH M. Features of promising technologies for pretreatment of lignocellulosic biomass. Biores. Technol. 96, 673, 2005.
  • 9. ZHANG J., WANG X.S., CHU D.Q., HE Y.Q., BAO J. Dry pretreatment of lignocellulose with extremely low steam and water usage for bioethanol production. Biores. Technol. 102, 4480, 2011.
  • 10. IRFAN M., SAFDAR A., SYED Q., NADEEM M. Isolation and screening of cellulolytic bacteria from soil and optimization of cellulase production and activity. Turkish J. Biochem, 37 (3), 287, 2012.
  • 11. AOAC Official Methods of Analysis of AOAC International, 18th ed., 33.2.43 (method 990.19); 33.7.03 (method 926.08); 32.1.03 (method 925.10); 44.4.04 (method 969.38A); 37.1.12 (method 920.151A); 29.1.22 (method 950.27); 43.1.04 (method 986.21); 42.2.01 (method 967.19E); 39.1.03 (AOAC 985.14); 32.1.14 (method 922.06); 35.1.23 (method 948.15); 33.2.26 (method 989.05); 33.3.19 (method 995.19); 33.2.27 (AOAC 989.04); 33.2.27A (AOAC 2000.18); 33.2.31 (AOAC 972.16). AOAC International, Maryland, USA. 2005.
  • 12. GOPAL K., RANJHA N. Laboratory manual for nutrition research. Ronland press (India) Pvt. Ltd. New Dehli. 1980.
  • 13. DUBOIS M.K., GILS J.K., HANNITON P.A., ROBES., SMITH F. Use of phenol reagent for the determination of total sugar. Analyt. Chem. 28, 350, 1956.
  • 14. MILLER G.L. Use of dinitrosalicyclic acid reagent for determination of reducing sugar. Biotechnol. Bioeng. Symp. 5, 193, 1959.
  • 15. FUJIMOTO E., STEVENSON T.J., CHIEN C.B., BONKOWSKY J.L. Identification of a dopaminergic enhancer indicates complexity in vertebrate dopamine neuron phenotype specification. Dev. Bio. 352, 393, 2011.
  • 16. SANCHEZ C., CARDONA A. Trends in biotechnological production of fuel ethanol from different feedstocks. Biores. Technol. 99, 5270, 2008.
  • 17. SADHU S., MAITI T.K. Cellulase Production by Bacteria: A Review. British Microbiol. Res. J. 3 (3), 235, 2013.
  • 18. HORIKOSHI K., Production of alkaline enzymes by alkalophilic microorganisms. Part I. Alkaline protease produced by Bacillus no. 221. Agric Biol Chem. 36, 1407, 1971.
  • 19. NIELSEN P., FRITZE D., PRIEST F.G., Phenetic diversity of alkaliphilic Bacillus strains: proposal for nine new species. Microbiol. 141, 1745, 1995.
  • 20. GOYAL V., MITTAL A., BHUWAL A.K., SINGH G., YADAV A., AGGARWAL N.K. Parametric optimization of cultural conditions for carboxymethyl cellulase production using pretreated rice straw by Bacillus sp. 313SI under stationary and shaking conditions. Biotechnology research international, 2014.
  • 21. SETHI S., DATTA A., GUPTA B.L., GUPTA S. Optimization of cellulase production from bacteria isolated from soil. ISRN biotechnology, 2013.
  • 22. ALCÁNTARA M.Á.B., DOBRUCHOWSKA J., AZADI P., GARCÍA B.D., MOLINA-HEREDIA F.P., REYES-SOSA F.M. Recalcitrant carbohydrates after enzymatic hydrolysis of pretreated lignocellulosic biomass. Biotechnology for Biofuels. 9 (1), 207, 2016.
  • 23. SATHITSUKSANOH N., SAWANT M., TRUONG Q., TAN J., CANLAS C.G., SUN N., ÇETINKOL Ö. How Alkyl Chain Length of Alcohols Affects Lignin Fractionation and Ionic Liquid Recycle During Lignocellulose Pretreatment. BioEnergy Research. 8 (3), 973, 2015.
  • 24. GAUR R., TIWARI S. Isolation, production, purification and characterization of an organic-solvent-thermostable alkalophilic cellulase from Bacillus vallismortis RG-07. BMC biotechnology. 15 (1), 1, 2015.
  • 25. Meng X., Ragauskas A.J. Recent advances in understanding the role of cellulose accessibility in enzymatic hydrolysis of lignocellulosic substrates. Current opinion in biotechnology. 27, 150, 2014.
  • 26. SUN Y., CHENG J., Hydrolysis of lignocellulosic materials for ethanol production: a review. Biores. Technol. 83, 1, 2002.
  • 27. PÉREZ J.A., BALLESTEROS I., BALLESTEROS M., SÁEZ F., NEGRO MJ., MANZANARES P. Optimizing liquid hot water pretreatment conditions to enhance sugar recovery from wheat straw for fuel-ethanol production. Fuel. 87, 3640, 2008.
  • 28. ORENCIO-TREJO M., DE LA TORRE-ZAVALA S., RODRIGUEZ-GARCIA A., AVILÉS-ARNAUT H., GASTELUM-ARELLANEZ A. Assessing the Performance of Bacterial Cellulases: the Use of Bacillus and Paenibacillus Strains as Enzyme Sources for Lignocellulose Saccharification. BioEnergy Research. 1-11, 2016.
  • 29. BERLIN A., MAXIMENKO V., GILKES N., SADDLER J. Optimization of enzyme complexes for lignocellulose hydrolysis. Biotechnol. Bioeng. 97, 287, 2007.
  • 30. ZHOU J., WANG Y., CHU J., LUO L., ZHUANG Y., ZHANG S. Optimization of cellulase mixture for efficient hydrolysis of steam-exploded corn stover by statistically designed experiments. Biores. Technol. 100, 819, 2009.
  • 31. ANDALIB M., ELBESHBISHY E., MUSTAFA N., HAFEZ H., NAKHLA G., ZHU J. Performance of an anaerobic fluidized bed bioreactor (AnFBR) for digestion of primary municipal wastewater treatment biosolids and bioethanol thin stillage. Renewable Energy. 71, 276, 2014.
  • 32. LE COSTAOUËC T., PAKARINEN A., VÁRNAI A., PURANEN T., VIIKARI L. The role of carbohydrate binding module (CBM) at high substrate consistency: comparison of Trichoderma reesei and Thermoascus aurantiacus Cel7A (CBHI) and Cel5A (EGII). Bioresource technology. 143, 196, 2013.
  • 33. MA L., LI C., YANG Z., JIA W., ZHANG D., CHEN S. Kinetic studies on batch cultivation of Trichoderma reesei and application to enhance cellulase production by fedbatch fermentation. Journal of biotechnology. 166 (4), 192, 2013.
  • 34. MAHAMUD M.R., GOMES D.J., Enzymatic Saccharification of Sugar Cane Bagasse by the Crude Enzyme from Indigenous Fungi. J. Sci. Res. 4 (1), 227, 2012.
  • 35. VINTILA T., DRAGOMIRESCU M., JURCOANE S., CAPRITA R., MAIU M. Production of cellulase by submerged andsolid-state cultures and yeasts selection for conversion of lignocellulose to ethanol. Romanian Biotechnol. Lett. 14(2), 4275, 2009.
  • 36. HASUNUMA T., KONDO A. Consolidated bioprocessing and simultaneous saccharification and fermentation of lignocellulose to ethanol with thermotolerant yeast strains. Process Biochemistry. 47(9), 1287, 2012.
  • 37. SAHA B.C., ITEN L.B., COTTA M.A., WU Y.V., Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process. Biochem. 40, 3693, 2005.
  • 38. YANG B., WYMAN C.E., Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose. Biotechnol Bioeng. 86 (1), 88, 2004.
  • 39. LI H., PU Y., KUMAR R., RAGAUSKAS A. J., WYMAN C.E. Investigation of lignin deposition on cellulose during hydrothermal pretreatment, its effect on cellulose hydrolysis, and underlying mechanisms. Biotechnology and bioengineering. 111 (3), 485, 2014.
  • 40. AVCI A., SAHA B.C., DIEN B.S., KENNEDY G.J., COTTA M.A. Response surface optimization of corn stover pretreatment using dilute phosphoric acid for enzymatic hydrolysis and ethanol production. Bioresource technology. 130, 603, 2013.
  • 41. GAO X., KUMAR R., SINGH S., SIMMONS B.A., BALAN V., DALE B.E., WYMAN C.E. Comparison of enzymatic reactivity of corn stover solids prepared by dilute acid, AFEX™, and ionic liquid pretreatments. Biotechnology for biofuels. 7 (1), 1, 2014.
  • 42. TABKA M.G., GIMBERT HI., MONOD F., ASTHER M., SIGOLLOT J.C. Enzymatic saccharification of wheat straw for bioethanol production by a combined cellulose xylanase and feruloyl esterase treatment. Enz. Microbial Technol. 39, 897, 2006.
  • 43. GOVUMONI S.P., KOTI S., KOTHAGOUNI S.Y., VENKATESHWAR S., LINGA V.R. Evaluation of pretreatment methods for enzymatic saccharification of wheat straw for bioethanol production. Carbohydrate polymers. 91 (2), 646, 2013.
  • 44. YAO R., QI B., DENG S., LIU N., PENG S., CUI Q. Use of surfactant in enzymatic hydrolysis of rice straw and lactic acid production from rice straw by simultaneous saccharification and fermentation. Biores. 2 (3), 38, 2007.
  • 45. GOVUMONI S.P., KOTI S., KOTHAGOUNI S.Y., VENKATESHWAR S., LINGA V.R. Evaluation of pretreatment methods for enzymatic saccharification of wheat straw for bioethanol production. Carbohydrate polymers. 91 (2), 646, 2013.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-f2ce48f4-0fcb-4ee0-a1aa-938ff6de5abe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.