PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 26 | 2 |

Tytuł artykułu

Vehicle-deck fires aboard ropax ships: a comparison between numerical modelling and experimental results

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
According to an official study conducted by the IMO Correspondence Group on Casualty Analysis concerning the fire incidents that occurred on the vehicle-decks of RoPax ships, covering the period from 1994 to 2011, it has been shown that a very serious incident has occurred every other year since 2002, resulting in six constructive total losses. The results of this review shed the light on the need to investigate the application of fire models to simulate fire scenarios that may occur on the vehicle-decks aboard RoPax ships. This will be very useful for the RoPax designers who are willing to introduce new technologies or deviate from the current prescriptive regulations of fire safety design in order to reduce the risk of such catastrophic accidents. The aim of this paper is to present the results of a comparison between the predictions of three different fire models and the experimental results of a model-scale fire test that represents a fire scenario on a vehicle-deck aboard a RoPax ship. A statistical analysis technique was used to illustrate the ability of each fire model to predict five outputs of concern. The main conclusion of this comparison is that there is always an optimal fire model that can predict one or more of the five outputs of concern with results in good agreement with the measured values

Słowa kluczowe

Wydawca

-

Rocznik

Tom

26

Numer

2

Opis fizyczny

p.155-162,fig.,ref.

Twórcy

autor
  • King Abdulaziz University, Al-Morjan District, 21581 Jeddah, Saudi Arabia
  • Alexandria University, Al-Hadara Al-Baharia, 21517 Alexandria, Egypt

Bibliografia

  • 1. Arvidson M, Axelsson J, Simonson M, Tuovinen H. 2006. Fire safety approach on the DESSO ROPAX. SP Rapport 2006:01.
  • 2. Arvidson M. 1997. Large scale Ro-Ro vehicle deck fire test. Nordtest project 1299-96. Brandforsk project 421-941. SP Swedish National Testing and Research Institute. Fire Technology. SP Report; 1997:15.
  • 3. Arvidson M. 2009. Large-scale ro-ro deck fire suppression tests. SP-Report. 2009:29.
  • 4. Arvidson M. 2014. Large-scale water spray and water mist fire suppression system tests for the protection of Ro–Ro cargo decks on ships. Fire Technology. 50(3):589–610.
  • 5. Averill JD. 1998. Performance-based codes: Economics documentation, and design [dissertation]. [Worcester (MA)]: Worcester Polytechnic Institute.
  • 6. Azzi C, Pennycott A, Mermiris G, Vassalos D. 2011. Evacuation simulation of shipboard fire scenarios. Paper presented at: FEMTC 2011. Fire and Evacuation Modelling Technical Conference; Maryland (USA).
  • 7. Azzi C, Vassalos D. 2010. Performance-Based design for fire safety on board passenger ships. Paper presented at PRADS 2010. 11th International Symposium on Design of Ships and Other Floating Structures; Rio de Janeiro (Brazil).
  • 8. Azzi C. 2010. Design for fire safety onboard passenger ships [dissertation]. [Glasgow]: Glasgow and Strathclyde Universities.
  • 9. Coyle P, Novozhilov, V. 2007. Further validation of fire dynamics simulator using smoke management studies. International Journal on Engineering Performance-Based Fire Codes, 9(1):7-30.
  • 10. Croccolo F. 2015. Fires on board RoPax ferries-Lessons learned. Presentation at 40th Annual Interferry Conference. Copenhagen, Denmark. October 3-7, 2015.
  • 11. DNV GL. 2016. Fires on Ro-Ro decks. Paper no. 2016-P012.
  • 12. DNV Technica. 1996. Safety Assessment of Passenger Ro-Ro Vessels. Main Report (Document Number: REP-T09-003), Joint North-West European Project. 28:1996.
  • 13. DNV. 2005. Fires on Ro-Rodecks. Paper no. 2005-P018.
  • 14. Eleftheria E, Apostolos P, Markos V. 2016. Statistical analysis of ship accidents and review of safety level. Safety science. 85:282–292.
  • 15. Karlsson U, Ulfvarson A. 2008. Chain Breakers—A Survey of Fatal ship accidents with the event-chain method. Marine Technology. 45(3):182–190.
  • 16. Kobayashi K, Salam MU. 2000. Comparing simulated and measured values using mean squared deviation and its components. Agronomy Journal. 92(2): 345–352.
  • 17. Konovessis D, Vassalos D. 2008. Risk evaluation for RoPax vessels. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment. 222(1):13–26.
  • 18. Larsson I, Ingason H, Arvidson M. 2002. Model-scale fire tests on a vehicle deck onboard a ship. SP Swedish National Testing and Research Institute, SP Fire Technology. SP Report 2002:05.
  • 19. McGrattan K, Hostikka S, McDermott R, Floyd J, Weinschenk C, Overholt K. 2017. Fire Dynamics Simulator, User’s Guide.NIST Special Publication. 1019(6):1–296.
  • 20. Peacock RD, Reneke PA, Forney GP. 2016. CFAST–Consolidated Fire And Smoke Transport (Version 7) Volume 2: User’s Guide. Technical Note, National Institute of Standards and Technology (NIST), Gaithersburg, Maryland. 1889(2):1–85.
  • 21. Salem AM, Dabess EM, Banawan AA, Leheta HW. 2013. The use of consequence analysis tools in fire-safety design of Nile-floating hotels. In: Soares CG, Pena FL, editors. Developments in maritime transportation and exploitation of sea resources. Proceedings of the 15th International Congress of the International Maritime Association of the Mediterranean (IMAM); 14–17 October 2013; A Coruña (Spain).
  • 22. Salem AM, Dabess EM, Banawan AA, Leheta HW. 2016. Fire safety design of Nile-floating hotels. Ships Offshore Struct. 11(5):482–500.
  • 23. Salem AM, Leheta HW. 2011. Sensitivity analysis of a fire model used in fire consequence calculations. In: Rizzuto E, Soares CG, editors. Sustainable Maritime Transportation and Exploitation of Sea Resources. Proceedings of the 14th International Congress of the International Maritime Association of the Mediterranean (IMAM); 13–16 September 2011; Genova (Italy).
  • 24. Salem AM. 2007. Risk-based design for fire safety of RoRo/Passenger ships [dissertation]. [Glasgow]: Glasgow and Strathclyde Universities.
  • 25. Salem AM. 2010. Fire engineering tools used in consequence analysis. Ships Offshore Struct. 5(2):155–187.
  • 26. Salem AM. 2013. Parametric analysis of a cabin fire using a zone fire model. Alexandria Eng J. 52(4):627–636.
  • 27. Salem AM. 2016. Use of Monte Carlo Simulation to assess uncertainties in fire consequence calculation. Ocean Engineering, 117:411–430.
  • 28. Taylor A [Internet]. 2015. The deadly fire aboard the ferry Norman Atlantic; [cited 13 May 2017], http://www.theatlantic. com/photo/2015/01/the-deadly-fire-aboard-the- ferry- norman-atlantic/100882/.
  • 29. Themelis N, Spyrou KJ. 2012. Probabilistic fire safety assessment of passenger ships. J Ship Rese. 56(4):252–275.
  • 30. Wade CA. 2004. A User’s Guide to BRANZFIRE. Building Research Association of New Zealand (BRANZ), Wellington, New Zealand.
  • 31. Wikman J, Evegren F, Rahm M, Leroux J, Breuillard A, Kjellberg M, Gustin L, Efraimsson F. 2017. Study investigating cost effective measures for reducing the risk from fires on ro-ro passenger ships (FIRESAFE). European Maritime Safety Agency, EMSA.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-f2c6cdb1-b821-43a1-94a3-d0b71ac4bd36
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.