PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 592 |

Tytuł artykułu

Markery molekularne wykorzystywane w selekcji zwierząt hodowlanych

Treść / Zawartość

Warianty tytułu

EN
Molecular markers used in selection of breeding animals

Języki publikacji

PL

Abstrakty

PL
Selekcja i dobór osobników do kojarzeń jest istotnym etapem pracy hodowlanej. Jednym z najstarszych i najbardziej powszechnych kryteriów decydujących o wyborze zwierząt do dalszych kojarzeń są cechy fenotypowe. W celu osiągnięcia lepszych efektów hodowlanych, klasyczną selekcję coraz częściej uzupełnia się wynikami badań wykorzystującymi markery molekularne powiązane z cechami użytkowymi. Pierwotnie stosowane markery były oparte na polimorfizmie losowo amplifikowanych fragmentów DNA i polimorfizmie długości fragmentów restrykcyjnych. Rozwój technik molekularnych i genomiki pozwoliły na pełniejsze zrozumienie podłoża genetycznego cech użytkowych i tym samym na wprowadzenie bardziej informatywnych technik opartych na polimorfizmie sekwencji mikrosatelitarnych, jak i wielkoskalowych analizach genomowych wielu tysięcy polimorficznych nukleotydów. W pracy przedstawiono najczęściej wykorzystywane markery molekularne, scharakteryzowano zasadę ich oznaczania oraz przedstawiono przykłady ich zastosowania w naukach zootechnicznych.
EN
Selection plays a crucial role in animal breeding. The oldest and still used methods of selection of animals to further breeding are often based on the phenotypic traits. This approach allows to improve results of breeding in relatively slowly pace and only in narrow degree. More effective way of obtaining progress is involving of molecular techniques and markers into breeding programs. There are many types of molecular markers associated with traits that are important from the viewpoint of the breeders as well as consumers. The most primary molecular markers are based on the proteins but their effectiveness is not sufficient. Therefore polymorphisms present in the genetic material were consider as a better way of enhancing of breeding results. The milestone in molecular biology was developing of PCR technique. Amplification of genetic material open new possibilities in many branches of science but also industry and agriculture. In this way such techniques as RAPD – Random Amplification of Polymorphic DNA, or RFLP – Restriction Fragment Length Polymorphism, were established. Whereas RAPD is mostly used to analysis of genetic diversity between populations, RFLP technique enabled investigating of association between particular alleles and the productive traits. Constant progress in molecular biology brings even more informative methods from polymorphic microsatellite markers up to high-throughput sequencing revealing whole genomes. Microsatellite polymorphism is based on the STR sequences (Short Tandem Repeats) that exhibit considerable variation between individuals, therefore they are great tool to monitoring of genetic structure of breeding population, designing of breeding programs and protecting against the inbreeding depression. Sequencing techniques are focused on the SNP polymorphism (Single Nucleotide Polymorphism), appearing between genomes. Sanger sequencing is limited to analysis of relatively small sequences, whereas NGS techniques allow to screen whole genomes in searching of polymorphic nucleotides involved in expression of desire traits. Results of sequencing are used to designing and development of SNP panels, that enable simultaneous screening of huge number of polymorphic nucleotide. Modern breeding programs are often supplemented by the results of genomic analysis, that brings meaningful insight into genetic background of such traits as meat quality, milk production or reproduction traits. Constant development of technology is followed by the decreasing of costs and therefore it seems that breeding programs assisted by molecular markers will be more widely introduced into the common usage.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

592

Opis fizyczny

s.37-49,rys.,bibliogr.

Twórcy

autor
  • Wydział Biologii, Nauk o Zwierzętach i Biogospodarki, Uniwersytet Przyrodniczy w Lublinie
autor
  • Wydział Biologii, Nauk o Zwierzętach i Biogospodarki, Uniwersytet Przyrodniczy w Lublinie
autor
  • Wydział Biologii, Nauk o Zwierzętach i Biogospodarki, Uniwersytet Przyrodniczy w Lublinie
autor
  • Wydział Biologii, Nauk o Zwierzętach i Biogospodarki, Uniwersytet Przyrodniczy w Lublinie

Bibliografia

  • Ajmone-Marsan P., Valentini A., Cassandro M., Vecchiotti-Antaldi G., Bertoni G., Kuiper M., 1997. AFLP™ markers for DNA fingerprinting in cattle. Anim. Genet. 28(6), 418–426.
  • Ajmone-Marsan P., Negrini R., Crepaldi P., Milanesi E., Gorni C., Valentini A., Cicogna M., 2001. Assessing genetic diversity in Italian goat populations using AFLP® markers. Anim. Genet. 32(5), 281–288.
  • Al-Atiyat R.M., 2015. The power of 28 microsatellite markers for parentage testing in sheep. Electron. J. Biotechnol. 18(2), 116–121.
  • Behjati S., Tarpey P.S., 2013. What is next generation sequencing? Arch. Dis. Child. Educ. Pract. Ed. 98(6), 236–238.
  • Bigi D., Marelli S.P., Randi E., Polli M., 2015. Genetic characterization of four native Italian shepherd dog breeds and analysis of their relationship to cosmopolitan dog breeds using microsatellite markers. Animal 9(12), 1921–1928.
  • Bonilla C.A., Rubio M.S., Sifuentes A.M., Parra-Bracamonte G.M., Arellano V.W., Mendez M.R.D., Berruecos J.M., Ortiz R., 2010. Association of CAPN1 316, CAPN1 4751 and TG5 markers with bovine meat quality traits in Mexico. Genet. Mol. Res. 9(4), 2395–2405.
  • Cecchinato A., Ribeca C., Chessa S., Cipolat-Gotet C., Maretto F., Casellas J., Bittante G., 2014. Candidate gene association analysis for milk yield, composition, urea nitrogen and somatic cell scores in brown swiss cows. Animal 8(7), 1062–1070.
  • Chang K.C., Beuzen N.D., Hall A.D., 2003. Identification of microsatellites in expressed muscle genes: Assessment of a desmin (CT) dinucleotide repeat as a marker for meat quality. Vet. J. 165(2), 157–163.
  • Ciobanu D.C., Bastiaansen J.W.M., Lonergan S.M., Thomsen H., Dekkers J.C.M., Plastow G.S., Rothschild M.F., 2004. New alleles in calpastatin gene are associated with meat quality traits in pigs. J. Anim. Sci. 82(10), 2829–2839.
  • De Donato M., Peters S.O., Mitchell S.E., Hussain T., Imumorin I.G., 2013. Genotyping-by-sequencing (GBS): A novel, efficient and cost-effective genotyping method for cattle using next-generation sequencing. PLOS ONE 8(5), e62137.
  • De Marchi M., Dalvit C., Targhetta C., Cassandro M., 2006. Assessing genetic diversity in indigenous veneto chicken breeds using AFLP markers. Anim. Genet. 37(2), 101–105.
  • Drogemuller C., Hamann H., Distl O., 2001. Candidate gene markers for litter size in different German pig lines. J. Anim. Sci. 79(10), 2565–2570.
  • Felicio A.M., Boschiero C., Balieiro J.C.C., Ledur M.C., Ferraz J.B.S., Moura A., Coutinho L.L., 2013. Polymorphisms in FGFBP1 and FGFBP2 genes associated with carcass and meat quality traits in chickens. Genet. Mol. Res. 12(1), 208–222.
  • Flagstad Ø., Walker C.W., Vilà C., Sundqvist A-K., Fernholm B., Hufthammer A.K., Wiig Ø., Koyola I., Ellegren H., 2003. Two centuries of the Scandinavian wolf population: patterns of genetic variability and migration during an era of dramatic decline. Mol. Ecol. 12(4), 869–880.
  • Gupta J.P., Bhushan B., Panigrahi M., Ranjan S., Asaf V.N.M., Kumar A., Sulabh S., Kumar P., Sharma D., 2016. Study on genetic variation of short tandem repeats (STR) markers and their association with somatic cell scores (SCS) in crossbred cows. Indian. J. Anim. Sci. 50(4), 450–454.
  • Jakubczak A., Jeżewska G., 2008. Validation of StockMarks® set for identifying origin of species from the canine family. Med. Weter. 64(6), 832–835.
  • Kamiński S., 2012. Genomowa ocena wartości hodowlanej zwierząt. Przegl. Hod. 80, 7–9.
  • Kamiński, S., 2015. Znaczenie analiz DNA w praktycznej hodowli bydła w Polsce. Wiad. Zootech. 53, 2, 46–51.
  • Kantanen J., Vilkki J., Elo K., Makitanila A., 1995. Random amplified polymorphic DNA in cattle and sheep – application for detecting genetic-variation. Anim. Genet. 26(5), 315–320.
  • Klukowska J., Strabel T., Mackowski M., Switonski, M., 2003. Microsatellite polymorphism and genetic distances between the dog, red fox and arctic fox. J. Anim. Breed. Genet. 120(2), 88–94.
  • Korwin-Kossakowska A., Kamyczek M., Cieslak D., Pierzchala M., Kuryl J., 2003. Candidate gene markers for reproductive traits in Polish 990 pig line. J. Anim. Breed. Genet. 120(3), 181–191.
  • Kranis A., Gheyas A.A., Boschiero C., Turner F., Yu L., Smith S., Talbot R., Pirani A., Brew F., Kaiser P., Hocking P.M., Fife M., Salmon N., Fulton J., Strom T.M., Haberer G., Weigend S., Preisinger R., Gholami M., Qanbari S., Simianer H., Watson K.A., Woolliams J.A., Burt D.W., 2013. Development of a high density 600k SNP genotyping array for chicken. BMC Genomics 14(1), 59.
  • Lan X.Y., Pan C.Y., Chen H., Zhang C.L., Li J.Y., Zhao M., Lei C.Z., Zhang A.L., Zhang L., 2007. An AluI PCR-RFLP detecting a silent allele at the goat POU1F1 locus and its association with production traits. Small Rumin. Res. 73(1–3), 8–12.
  • Meseret S., 2016. A review of poultry welfare in conventional production system. Livest. Res. Rural Dev. 28(12), # 234.
  • Molinski K., Szwaczkowski T., Gornowicz E., Lisowski M., Grajewski B., Dobek A., 2015. New approach for the detection of loci determining duck meat quality. Europ. Poult. Sci. 79. DOI: 10.1399/eps.2015.98
  • Mucha S., Grajewski B., Gornowicz E., Lisowski M., Radziszewska J., Szwaczkowski T., 2014. Mapping quantitative trait loci affecting some carcass and meat traits in duck (Anas platyrhynchos). J. Appl. Genet. 55(4), 497–503.
  • Mucha S., Mrode R., MacLaren-Lee I., Coffey M., Conington J., 2015. Estimation of genomic breeding values for milk yield in UK dairy goats. J. Dairy. Sci. 98(11), 8201–8208.
  • Oltenacu P.A., Broom D.M., 2010. The impact of genetic selection for increased milk yield on the welfare of dairy cows. Anim. Welf. 19, 39–49.
  • Palomares F., Godoy J.A., Piriz A., O’Brien S. J., Johnson W.E., 2002. Faecal genetic analysis to determine the presence and distribution of elusive carnivores: design and feasibility for the Iberian lynx. Mol. Ecol. 11(10), 2171–2182.
  • Prunier A., Heinonen M., Quesnel H., 2010. High physiological demands in intensively raised pigs: Impact on health and welfare. Animal 4(6), 886–898.
  • Ptak E., Barc, A., Jagusiak W., 2015. Rozwój metod oceny wartości hodowlanej zwierząt na przykładzie bydła mlecznego w ujęciu retrospektywnym. Przegl. Hod. 83(2).
  • Radko A., 2007. Analiza bioróżnorodności owiec na podstawie markerów mikrosatelitarnych DNA. Wiad. Zootech. 4(45), 45–48.
  • Reklewski Z., 2005. Hodowla zachowawcza bydła rasy polskiej czerwonej. Wiad. Zootech. 2(245), 98–101.
  • Ropka-Molik K., Bereta A., Tyra M., Rozycki M., Piorkowska K., Szyndler-Nedza M., Szmatola T., 2014. Association of calpastatin gene polymorphisms and meat quality traits in pig. Meat Sci. 97(2), 143–150.
  • Salamon D., Gutierrez-Gil B., Arranz J.J., Barreta J., Batinic V., Dzidic A., 2014. Genetic diversity and differentiation of 12 eastern Adriatic and western Dinaric native sheep breeds using microsatellites. Animal 8(2), 200–207.
  • Sanger F., Nicklen S., Coulson A.R., 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74(12), 5463–5467.
  • Seilsuth S., Seo J. H., Kong H. S., Jeon G.J., 2016. Microsatellite analysis of the genetic diversity and population structure in dairy goats in Thailand. Asian-Australas. J. Anim. Sci. 29(3), 327.
  • Seyedabadi H.R., Savar Sofla S., 2017. Microsatellite analysis for parentage verification and genetic characterization of the Turkmen horse population. Kafkas. Univ. Vet. Fak. Derg. 23(3), 467–471.
  • Sharma R., Kishore A., Mukesh M., Ahlawat S., Maitra A., Pandey A.K., Tantia M.S., 2015. Genetic diversity and relationship of Indian cattle inferred from microsatellite and mitochondrial DNA markers. BMC Genet. 16, 73–84.
  • Slaska B., Zieba G., Rozempolska-Rucinska I., Jezewska-Witkowska G., Jakubczak A., 2010. Evaluation of genetic biodiversity in farm-bred and wild raccoon dogs in Poland. Folia Biol. 58 (3–4), 195–199.
  • Tsuruta S., Lourenco D.A.L., Misztal I., Lawlor T.J., 2015. Genotype by environment interactions on culling rates and 305-day milk yield of holstein cows in 3 US regions. J. Dairy Sci. 98(8), 5796–5805.
  • Tsuruta S., Lourenco D.A.L., Misztal I., Lawlor T.J., 2017. Genomic analysis of cow mortality and milk production using a threshold-linear model. J. Dairy Sci. 100(9), 7295–7305.
  • Velleman S.G., Anderson J.W., Coy C.S., Nestor K.E., 2003. Effect of selection for growth rate on muscle damage during turkey breast muscle development. Poult. Sci. 82(7), 1069–1074.
  • Vos P., Hogers R., Bleeker M., Reijans M., Vandelee T., Hornes M., Frijters A., Pot J., Peleman J., Kuiper M., Zabeau M., 1995. AFLP – a new technique for DNA-fingerprinting. Nucleic Acids Res. 23(21), 4407–4414.
  • Williams J.L., 2005. The use of marker-assisted selection in animal breeding and biotechnology. Rev. Sci. Tech. 24(1), 379–391.
  • Wimmers K., Murani E., Ponsuksili S., Yerle M., Schellander K., 2002. Detection of quantitative trait loci for carcass traits in the pig by using AFLP. Mamm. Genome 13(4), 206–210.
  • Winter A., Kramer W., Werner F.A.O, Kollers S., Kata S., Durstewitz G., Buitkamp J., Womack J.E., Thaller G., Fries R., 2002. Association of a lysine-232/alanine polymorphism in a bovine gene encoding acyl-CoA:diacylglycerol acyltransferase (DGAT1) with variation at a quantitative trait locus for milk fat content. Proc. Natl. Acad. Sci. USA 99(14), 9300–9305.
  • Xu Q.L., Chen Y.L., Ma R.X., Xue P., 2009. Polymorphism of DGAT1 associated with intramuscular fat-mediated tenderness in sheep. J. Sci. Food Agric. 89(2), 232–237.
  • Yang W.J., Kang X.L., Yang Q.F., Lin Y., Fang M.Y., 2013. Review on the development of genotyping methods for assessing farm animal diversity. J Anim. Sci. Biotechnol. 4(2), 1–6.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-f1e1df12-a0a2-4db6-916c-527543eb07ec
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.