PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 24 | 4 |

Tytuł artykułu

Design and optimization of Cu(II) adsorption conditions from aqueous solutions by low-cost adsorbent pumice with response surface methodology

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The adsorption of Cu(II) by pumice was investigated in a batch system. Optimization of medium conditions was studied through experimental design. Response surface methodology – including central composite design – was successfully applied to develop a response surface to optimize medium conditions. The most influential medium parameters were determined as initial Cu(II) concentration, pH, temperature, and adsorbent dosage. The optimum conditions were evaluated to be 47.14 mg/L, 5.31, 38.30ºC, and 3.14 g for initial Cu(II) concentration, pH, temperature and adsorbent dosage, respectively. At these optimum points, the adsorption yield and adsorption capacity were calculated as 95.10% and 1.43 mg/g, respectively.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

24

Numer

4

Opis fizyczny

p.1749-1756,fig.,ref.

Twórcy

autor
  • Department of Environmental Engineering, Faculty of Engineering and Architecture, Yuzuncu Yil University, 65080 Van, Turkey
autor
  • Department of Chemical Engineering, Faculty of Engineering and Architecture, Yuzuncu Yil University, 65080 Van, Turkey

Bibliografia

  • 1. LESTER I.N. Heavy Metals in Wastewater and Sludge Treatment Processes; CRC Press Inc.: Boca Raton, FL, U.S.A. 1987.
  • 2. ÖZAY Ö., EKICI S., BARAN Y., KUBILAY Ş., AKTAŞ N., ŞAHINER N. Utilization of magnetic hydrogels in the separation of toxic metal ions from aqueous environments. Desalination, 260, (1-3), 57, 2010.
  • 3. ŞAHAN T., ÖZTÜRK D. Investigation of Pb(II) adsorption onto pumice samples: application of optimization method based on fractional factorial design and response surface methodology. Clean Techn. Environ. Policy 16, (5), 819, 2014.
  • 4. AL-DEGS Y., KHRAISHEH M.A.M., TUTUNJI, M.F. Sorption of lead ions on diatomite and manganese oxides modified diatomite. Water Res. 35, (15), 3724, 2001.
  • 5. JIANG M., JIN X., LU X., CHEN Z. Adsorption of Pb(II), Cd(II), Ni(II) and Cu(II) onto natural kaolinite clay. Desalination 252, (1-3), 33, 2010.
  • 6. ALSHABANAT M., ALSENANI G., ALMUFARIJ R. Removal of crystal violet dye from aqueous solutions onto date palm fiber by adsorption technique. Journal of Chemistry DOI: 10.1155/2013/210239, 2013.
  • 7. PANUCCIO M.R., SORGONÀ A., RIZZO M., CACCO G. Cadmium adsorption on vermiculite, zeolite and pumice: Batch experimental studies. J. Environ. Manage. 90, (1), 364, 2009.
  • 8. MELICHOVÁ Z., HROMADA L. Adsorption of Pb²⁺ and Cu²⁺ Ions from Aqueous Solutions on Natural Bentonite. Pol. J. Environ. Stud. 22, (2), 457, 2013.
  • 9. SANGIUMSAK N., PUNRATTANASIN P. Adsorption Behavior of Heavy Metals on Various Soils. Pol. J. Environ. Stud. 23, (3), 853, 2014.
  • 10. WAN NGAH W.S., TEONG L.C., TOH R.H., HANAFIAH M.A.K.M. Utilization of chitosan-zeolite composite in the removal of Cu(II) from aqueous solution: Adsorption, desorption and fixed bed column studies. Chem. Eng. J. 209, 46, 2012.
  • 11. WU X-W., MA H-W., ZHANG L-T., WANG F-J. Adsorption properties and mechanism of mesoporous adsorbents prepared with fly ash for removal of Cu(II) in aqueous solution. Appl. Surf. Sci., 261, 902, 2012.
  • 12. MEITEI M.D., PRASAD M.N.V. Adsorption of Cu(II), Mn(II) and Zn(II) by Spirodela polyrhiza (L.) Schleiden: Equilibrium, kinetic and thermodynamic studies. Ecol. Eng. 71, 308, 2014.
  • 13. ROCHA C.G., ZAIA D.A.M., ALFAYA R.V.S., ALFAYA A.A.S. Use of rice straw as biosorbent for removal of Cu(II), Zn(II), Cd(II) and Hg(II) ions in industrial effluents. J. Hazard. Mater. 166, (1), 383, 2009.
  • 14. KAMARI A., YUSOFF S.N.M., ABDULLAH F., PUTRA W.P. Biosorptive removal of Cu (II), Ni (II) and Pb (II) ions from aqueous solutions using coconut dregs residue: Adsorption and characterisation studies. J. Environ. Chem. Eng. 2, (4), 1912, 2014.
  • 15. TAN W.S., TING A.S.Y. Alginate-immobilized bentonite clay: Adsorption efficacy and reusability for Cu(II) removal from aqueous solution. Bioresource Technol. 160, 115, 2014.
  • 16. POLAT A., ASLAN S. Kinetic and isotherm study of cupper adsorption from aqueous solution using waste eggshell. J. Environ. Eng. Landsc. 22, (2), 132, 2014.
  • 17. ŞAHAN T., CEYLAN H., ŞAHINER N., AKTAŞ N. Optimization of removal conditions of copper ions from aqueous solutions by Trametes versicolor. Bioresource Technol. 101, (12), 4520, 2010.
  • 18. YETILMEZSOY K., DEMIREL S., VANDERBEI R.J. Response surface modeling of Pb(II) removal from aqueous solution by Pistacia vera L.: Box-Behnken experimental design. J. Hazard. Mater. 171, 551, 2009.
  • 19. MYERS R.H., MONTGOMERY D.C. Response Surface Methodology, John Wiley & Sons Inc., USA, pp. 43, 2002.
  • 20. RAJI C., ANIRUDHAN T.S. Chromium(VI) adsorption by sawdust carbon: Kinetics and equilibrium. Indian J. Chem. Techn. 4, 228, 1997.
  • 21. MITTAL A., KRISHNAN, L., GUPTA V.K. Removal and recovery of malachite green from wastewater using an agricultural waste material, de-oiled soya. Sep. Purif. Technol. 43, 125, 2005.
  • 22. ÖZER A., ÖZER D., ÖZER A. The adsorption of copper(II) ions on to dehydrated wheat bran (DWB): determination of the equilibrium and thermodynamic parameters. Process Biochem. 39, 2183, 2004.
  • 23. KARIMAIAN K.A., AMRANE A., KAZEMIAN H., PANAHI R., ZARRABI M. Retention of phosphorous ions on natural and engineered waste pumice: Characterization, equilibrium, competing ions, regeneration, kinetic, equilibrium and thermodynamic study. Appl. Surf. Sci. 284, 419, 2013.
  • 24. SARI A., TUZEN M. Kinetic and equilibrium studies of Pb(II) and Cd(II) removal from aqueous solution onto colemanite ore waste. Desalination 249, (1), 260, 2009.
  • 25. AMARASINGHE B.M.W.P.K., WILLIAMS R.A. Tea waste as a low cost adsorbent for the removal of Cu and Pb from wastewater. Chem. Eng. J. 132, 299, 2007.
  • 26. LI W., ZHANG L., PENG J., LI N., ZHANG S., GUO S. Tobacco stems as a low cost adsorbent for the removal of Pb(II) from wastewater: Equilibrium and kinetic studies. Ind. Crop. Prod. 28, 294, 2008.
  • 27. GÜNDOĞAN R., ACEMIOĞLU B., ALMA M.H. Copper(II) Adsorption from Aqueous Solution by Herbaceous Peat. J. Colloid Interf. Sci. 269, (2), 303, 2004.
  • 28. HO Y.S., MCKAY G. The sorption of lead (II) ions on peat. Water Res. 33, (2), 578, 1999.
  • 29. MIRETZKY P., MUNOZ C., CANTORAL-URIZA E. Cd²⁺ adsorption on alkaline-pretreated diatomaceous earth: equilibrium and thermodynamic studies. Environ Chem Lett. 9, 55, 2011.
  • 30. ÇALIŞKAN N., KUL A.R., ALKAN S., GÖKIRMAK SOĞÜT E., ALACABEY İ. Adsorption of Zinc(II) on diatomite and manganese-oxide-modified diatomite: A kinetic and equilibrium study. J. Hazard Mater. 193, 27, 2011.
  • 31. SAKURAI K., OHDATE Y., KYUMA K. Factors affecting Zero Point of Charge (ZPC) of variable charge soils. Soil Sci. Plant. Nutr. 35, (1), 21, 1989.
  • 32. GUPTA S.S., BHATTACHARYYA K.G. Removal of Cd(II) from aqueous solution by kaolinite, montmorillonite and their poly(oxo zirconium) and tetrabutylammonium derivatives. J. Hazard Mater. 128, 247, 2006.
  • 33. SINGH D.K., TIWARI D.P., SAKSENA D.N. Removal of Lead from aqueous solutions by chemically treated tea leaves. Indian J. Environ. Health 35, 169, 1993.
  • 34. ADEBOWALE K.O., UNUABONAH I.E., OLUOWOLABI B.I. The effect of some operating variables on the adsorption of lead and cadmium ions on kaolinite clay. J. Hazard. Mater. 134, 130, 2006.
  • 35. JIANG M., WANG Q., JIN X., CHEN Z. Removal of Pb(II) from aqueous solution using modified and unmodified kaolinite clay. J. Hazard. Mater. 170, 332, 2009.
  • 36. SHUKLA S.R., GAIKAR V.G., PAI R.S., SURYAVANSHI U.S. Batch and column adsorption of Cu(II) on unmodified and oxidized coir. Sep. Sci. Technol. 44, (1), 40, 2009.
  • 37. LIU Y., CHEN M., YONGMEI H. Study on the adsorption of Cu(II) by EDTA functionalized Fe₃O₄ magnetic nano-particles. Chem. Eng. J. 218, 46, 2013.
  • 38. ANIRUDHAN T.S., RADHAKRISHNAN P.G. Thermodynamics and kinetics of adsorption of Cu(II) from aqueous solutions onto a new cation exchanger derived from tamarind fruit shell. J. Chem. Thermodynamics 40, 702, 2008.
  • 39. SARI A., TUZEN M., ÇITAK D., SOYLAK M. Adsorption characteristics of Cu(II) and Pb(II) onto expanded perlite from aqueous solution. J. Hazard. Mater. 148, 387, 2007.
  • 40. ÖZSOY H.D., KUMBUR H. Adsorption of Cu(II) ions on cotton boll. J. Hazard. Mater. 136, 911, 2006.
  • 41. MUNAF E., HAYUNI F., ZEIN R., SUYANI H. The use of Snake Fruit (Salacca sumatrana) Seeds Powder for the Removal of Cd(II), Cu(II) and Zn(II) Ions from Environmental Water. Res. J. Pharm., Biol. Chem. Sci. 5, (2), 1535, 2014.
  • 42. TIWARI A., TIWARI R., BAJPAI A.K. Dynamic and Equilibrium Studies on Adsorption of Cu(II) Ions onto Biopolymeric Cross-Linked Pectin and Alginate Beads. J. Disper. Sci. Technol. 30, (8), 1208, 2009.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-f1a11fd4-8601-4979-a33b-eaf42fb4fb65
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.