PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 37 | 02 |

Tytuł artykułu

Impacts of contrasting light on bud burst and on RwMAX1 and RwMAX2 expression in rose

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Bud burst is a crucial factor in plant architecture and is strongly induced by light. In Rosa sp., this light effect was correlated with the growth of axillary buds and RwMAX1 and RwMAX2 expression within buds. In this paper, we investigated whether strigolactone pathway is involved in the regulation of axillary bud in response to light intensity. Hence, young roses were subjected to two contrasting light intensity regimes: high/high and high/low. The phenotype was characterized in both conditions and the expression of RwMAX1 and RwMAX2 genes was measured in the basal, middle and apical parts of rose primary branch. Light treatments showed a strong impact on axillary bud. The percentage of bud burst was severely reduced in the treatment high/low compared to the treatment high/high in all branch parts. In addition, the expression of RwMAX1 and RwMAX2 was strongly inhibited by high/high light regime and was conversely correlated with the rate of bud burst. In in vitro-grown axillary buds supplied with sucrose, glucose and fructose, RwMAX1 expression was significantly stimulated whereas that of RwMAX2 was significantly inhibited. Our results suggest that although RwMAX1 and RwMAX2 expression can be regulated by light, this expression does not explain the ability of bud burst.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

37

Numer

02

Opis fizyczny

Article: 30 [9 p.], fig.,ref.

Twórcy

autor
  • INRA, Institut de Recherche en Horticulture et Semences (INRA, Agrocampus-Ouest, Universite d’Angers), SFR 149 QUASAV, 44071 Beaucouze, France
  • Laboratoire de Physiologie Moleculaire des Plantes, Centre de Biotechnologie, B.P. 901, 2050 Hammam Lift, Tunisia
  • Institut de Recherche en Horticulture et Semences (INRA, Agrocampus-Ouest, Universite d’Angers), Universite d’Angers, SFR 149 QUASAV, 49045 Angers, France
  • INRA, Institut de Recherche en Horticulture et Semences (INRA, Agrocampus-Ouest, Universite d’Angers), SFR 149 QUASAV, 44071 Beaucouze, France
  • INRA, Institut de Recherche en Horticulture et Semences (INRA, Agrocampus-Ouest, Universite d’Angers), SFR 149 QUASAV, 44071 Beaucouze, France
autor
  • Agrocampus-Ouest, Institut de Recherche en Horticulture et Semences (INRA, Agrocampus-Ouest, Universited’Angers), SFR 149 QUASAV, 49045 Angers, France
autor
  • INRA, Institut de Recherche en Horticulture et Semences (INRA, Agrocampus-Ouest, Universite d’Angers), SFR 149 QUASAV, 44071 Beaucouze, France
autor
  • Agrocampus-Ouest, Institut de Recherche en Horticulture et Semences (INRA, Agrocampus-Ouest, Universited’Angers), SFR 149 QUASAV, 49045 Angers, France

Bibliografia

  • Bartlett GA, Remphrey WR (1998) The effect of reduced quantities of photosynthetically active radiation on Fraxinus pennsylvanica growth and architecture. Can J Bot 76:1359–1365
  • Bennette T, Sieberer T, Willett B, Booker J, Luschnig C, Leyser O (2006) The Arabidopsis MAX pathway controls shoot branching by regulating auxin transport. Curr Biol 16:553–563
  • Beveridge CA, Ross JJ, Murfet IC (1994) Branching mutant rms-2 in Pisum sativum. Grafting studies and endogenous indole-3-acetic acid levels. Plant Physiol 104:953–959
  • Beveridge CA, Symons GM, Murfe IC, Ross JJ, Rameau C (1997) The rms1 mutant of pea has elevated of indole-3-acetic acid levels and reduced root-sap zeatin riboside content but increased branching controlled by graft transmissible signal(s). Plant Physiol 115:1251–1258
  • Beveridge CA, Symons GM, Turnbull C (2000) Auxin inhibition of decapitation induced branching is dependent on graft-transmissible signals regulated by genes rms1 and rms2. Plant Physiol 123:689–697
  • Booker J, Sieberer T, Wright W, Williamson L, Willett B, Stirnberg P et al (2005) MAX1 encodes a cytochrome P450 family member that acts downstream of MAX3/4 to produce a carotenoidderived branch-inhibiting hormone. Dev Cell 8:443–449
  • Bredmose N (1997) Chronology of three physiological development phases of single-stemmed rose (Rosa hybrida L.) plants in response to increment in light quantum integral. Sci Hortic 69:107–115
  • Brewer PB, Dun EA, Ferguson BJ, Rameau C, Beveridge CA (2009) Strigolactone acts downstream of auxin to regulate bud outgrowth in pea and Arabidopsis. Plant Physiol 150:482–493
  • Djennane S, Hibrand-Saint Oyant L, Kawamura K, Lalanne D, Laffaire M, Thouroude T et al (2013) Impacts of light and temperature on shoot branching gradient and expression of strigolactone synthesis and signalling genes in rose. Plant Cell Environ. doi:10.1111/pce.12191
  • Evers JB, Vos J, Andrieu B, Struik PC (2006) Cessation of tillering in spring wheat in relation to light interception and red:far-red ratio. Ann Bot 97:649–658
  • Ferguson BJ, Beveridge CA (2009) Roles for auxin, cytokinin, and strigolactone in regulating shoot branching. Plant Physiol 149:1929–1944
  • Foo E, Turnbull CGN, Beveridge CA (2001) Long distance signalling and the control of branching in the rms1 mutant of pea. Plant Physiol 126:203–209
  • Girault T, Bergougnoux V, Combes D, Vie´mont JD, Leduc N (2008) Light controls shoot meristem organogenic activity and leaf primordia growth during bud burst in Rosa sp. Plant Cell Environ 31:1534–1544
  • Girault T, Abidi F, Sigogne M, Pelleschi-Travier S, Boumaza R, Sakr S et al (2010) Sugars are under light control during bud burst in Rosa sp. Plant Cell Environ 33(8):1339–1350
  • Gomez-Roldan V, Fermas S, Brewer PB, Puech-Page`s V, Dun EA, Pillot JP et al (2008) Strigolactone inhibition of shoot branching. Nature 455:189–194
  • Hayward A, Stirnberg P, Beveridge C, Leyser O (2009) Interactions between auxin and strigolactone in shoot branching control. Plant Physiol 151:400–412
  • Healy WH, Wilkins HF (1980) The effect of light quality on ‘bottombreaks’ in roses. Roses Inc Bull:71–72
  • Henry C, Rabot A, Laloi M, Mortreau E, Sigogne M, Leduc N et al (2011) Regulation of RhSUC2, a sucrose transporter, is correlated with the light control of bud burst in Rosa sp. Plant Cell Environ 34:1776–1789
  • Ishikawa S, Maekawa M, Arite T, Onishi K, Takamure I, Kyozuka J (2005) Suppression of tiller bud activity in tillering dwarf mutants of rice. Plant Cell Physiol 46:79–86
  • Kawamura K, Takeda H (2004) Rules of crown development in the clonal shrub Vaccinium hirsutum in a low-light understory: a quantitative analysis or architecture. Can J Bot 82:329–339
  • Kebrom TH, Brutnell TP, Finlayson SA (2010) Suppression of sorghum axillary bud outgrowth by shade, phyB and defoliation signalling pathways. Plant Cell Environ 33:48–58
  • Lazar G, Goodman HM (2006) MAX1, a regulator of the flavonoid pathway, controls vegetative axillary bud outgrowth in Arabidopsis. Proc Natl Acad Sci 103(2):472–476
  • Leyser O (2009) The control of shoot branching: an example of plant information processing. Plant Cell Environ 32:694–703
  • Lin H, Wang R, Qian Q et al (2009) DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth. Plant Cell 21:1512–1525
  • Maas FM, Bakx EJ (1995) Effects of light on growth and flowering of Rosa hybrids ‘Mercedes’. J Am Soc Hortic Sci 120:571–576
  • Marks TR, Simpson SE (1999) Effect of irradiance on shoot development in vitro. Plant Growth Regul 28:133–142
  • Mayoli RN, Isutsa DK, Tunya GO (2009) Growth of ranunculus cutflower under tropical high altitude conditions. 1: effects of GA3 and Shade. Afr J Hortic Sci 2:13–28
  • Mor Y, Halevy AH (1980) Promotion of sink activity of developing rose shoot by light. Plant Physiol 66:990–995
  • Morris SE, Turnbull CGN, Murfet IC, Beveridge CA (2001) Mutational analysis of branching in pea. Evidence that Rms1 and Rms5 regulate the same novel signal. Plant Physiol 126:1205–1213
  • Muleo R, Morini S (2008) Physiological dissection of blue and red light regulation of apical dominance and branching in M9 apple rootstock growing in vitro. J Plant Physiol 165:1838–1846
  • Muleo R, Morini S, Casano S (2001) Photoregulation of growth and branching of plum shoots: physiological action of two photosystems. Cell Dev Biol 37:609–617
  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiol Plant 15:473–492
  • Napoli CA (1996) Highly branched phenotype of the petunia dad1-1mutant is reversed by grafting. Plant Physiol 111:27–37
  • Neff MN, Fankhauser C, Chory J (2000) Light: an indicator of time and place. Genes Dev 14:257–271
  • Niinemets U, Lukjanova A (2003) Total foliar area and average leaf age may be more strongly associated with branching frequency than with leaf longevity in temperate conifers. New Phytol 158:75–89
  • Ongaro V, Leyser O (2008) Hormonal control of shoot branching. J Exp Bot 59:67–74
  • Pfaffl MW, Tichopad A, Prgomet C, Neuvians T (2004) Determination of stable housekeeping genes, differently regulated target genes and sample integrity BestKeeper-Excel-based tool using pair-wise correlations. Biotechnol Lett 26:509–515
  • Rabot A, Henry C, Ben Baaziz K, Mortreau E, Azri W, Lothier J et al (2012) Insight into the role of sugars in bud burst under light in the rose. Plant Cell Physiol 53(6):1068–1082
  • Rameau C (2010) Strigolactones, a novel class of plant hormone controlling shoot branching. CR Biol 333:344–349
  • Rasmussen IB, Lunde E, Michaelsen TE, Bogen B, Sandlie I (2001) The principle of delivery of T cell epitopes to antigen-presenting cells applied to peptides from influenza virus, ovalbumin, and hen egg lysozyme: implications for peptide vaccination. Proc Natl Acad Sci 98(18):10296–10301
  • Shimizu-Sato S, Mori H (2001) Control of outgrowth and dormancy in axillary buds. Plant Physiol 127:1405–1413
  • Sorefan K, Booker J, Haurogne K et al (2003) MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching in Arabidopsis and pea. Genes Dev 17:1469–1474
  • Stirnberg P, van de Sande K, Leyser O (2002) Max1 and max2 control shoot lateral branching in Arabidopsis. Development 129:1131–1141
  • Stirnberg P, Furner IJ, Leyser HMO (2007) MAX2 participates in an SCF complex which acts locally at the node to suppress shoot branching. Plant J 50:80–94
  • Takei K, Ueda N, Aoki K, Kuromori T, Hirayama T, Shinozaki K et al (2004) AtIPT3 is a key determinant of nitrate-dependent cytokinin biosynthesis in Arabidopsis. Plant Cell Physiol 45:1053–1062
  • Takenaka A (2000) Shoot growth responses to light microenvironment and correlative inhibition in tree seedlings under a forest canopy. Tree Physiol 20:987–991
  • Umehara M, Hanada A, Yoshida S et al (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195–200
  • Zieslin N, Mor Y (1990) Light on roses. A review. Sci Hortic 43:1–14

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-f0a19686-02bc-45e5-94fe-9abcf373247d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.