PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 36 | 05 |

Tytuł artykułu

Isolation of a WD40-repeat gene regulating anthocyanin biosynthesis in storage roots of purple-fleshed sweet potato

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Many transcriptional factors including the R2R3-MYB domain, basic helix-loop-helix (bHLH) domain and WD40 repeat proteins, which regulate flavonoid biosynthesis, have been identified in various plant species. However, there is little information on WD40 proteins in underground organs. In this study, a WD40-repeat protein gene was isolated from purple-fleshed sweet potato (Ipomoea batatas (L.) Lam. cv. Yamakawamurasaki) (IbWD40). The expression patterns of this gene were positively correlated with anthocyanin accumulation in different sweet potato cultivars. An IbWD40-GFP fusion protein was observed only in the nucleus of onion epidermal cells, which was consistent with its role as a transcriptional regulator. Stable transformation analysis revealed that IbWD40 was up-regulated in Arabidopsis thaliana seedlings, which accumulated anthocyanins, with possible additional effects on the formation of other flavonoid compounds in other tissues. These results suggest that in storage roots of purple-fleshed sweet potato the activity of IbWD40 plays a critical role in the regulation of anthocyanin biosynthesis.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

36

Numer

05

Opis fizyczny

p.1123-1132,fig.,ref.

Twórcy

autor
  • Guangdong Key Lab. of Biotechnology for Plant Development,School of Life Sciences, South China Normal University, Guangzhou 510631, People's Republic of China
autor
  • Guangdong Key Lab. of Biotechnology for Plant Development,School of Life Sciences, South China Normal University, Guangzhou 510631, People's Republic of China
autor
  • Guangdong Key Lab. of Biotechnology for Plant Development,School of Life Sciences, South China Normal University, Guangzhou 510631, People's Republic of China
autor
  • Guangdong Key Lab. of Biotechnology for Plant Development,School of Life Sciences, South China Normal University, Guangzhou 510631, People's Republic of China

Bibliografia

  • An XH, Tian Y, Chen KQ, Wang XF, Hao YJ (2012) The apple WD40 protein MdTTG1 interacts with bHLH but not MYB proteins to regulate anthocyanin accumulation. J Plant Physiol 169:710–717. doi:10.1016/j.jplph.2012.01.015
  • Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815. doi:10.1038/35048692
  • Baudry A, Heim MA, Dubreucq B, Caboche M, Weisshaar B, Lepiniec L (2004) TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. Plant J 39:366–380. doi:10.1111/j.1365-313X.2004.02138.x
  • Carey CC, Strahle JT, Selinger DA, Chandler VL (2004) Mutations in the Pale aleurone cotorl regulatory gene of the Zea mays anthoeyanin Path way have distinet phenotypes relative to the funetionally similar TRANSPARENT TESTA GLABRA1 gene in Arabidopsis thaliana. Plant Cell 16:450–464. doi:10.1105/tpc.018796
  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743. doi:10.1046/j.1365-313x.1998.00343.x
  • de Vetten N, Quattrocchio F, Mol J, Koes R (1997) The an11 locus controlling flower pigmentation in petunia encodes a novel WD-repeat protein conserved in yeast, plants, and animals. Genes Dev 11:1422–1434. doi:10.1016/j.plantsci.2010.06.001
  • Dubos C, Le Gourrierec J, Baudry A, Huep G, Lanet E, Debeaujon I, Routaboul JM, Alboresi A, Weisshaar B, Lepiniec L (2008) MYBL2 is a new regulator of flavonoid biosynthesis in Arabidopsis thaliana. Plant J 55:940–953. doi:10.1111/j.1365-313X.2008.03564.x
  • El Abidine Triqui Z, Guédira A, Chlyah A, Chlyah H, Souvannavong V, Haïcour R, Sihachakr D (2008) Effect of genotype, gelling agent, and auxin on the induction of somatic embryogenesis in sweet potato (Ipomoea batatas Lam.). C R Biol 331:198–205. doi:10.1016/j.crvi.2007.11.009
  • Espley RV, Hellens RP, Putterill J, Stevenson DE, Kutty-Amma S, Allan AC (2007) Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant J 49:414–427. doi:10.1111/j.1365-313X.2006.02964.x
  • Espley RV, Brendolise C, Chagné D, Kutty-Amma S, Green S, Volz R, Putterill Jo, Schouten HJ, Gardiner SE, Hellens RP, Allan AC (2009) Multiple repeats of a promoter segment causes transcription factor autoregulation in red apples. Plant Cell 21:168–183. doi:10.1105/tpc.108
  • FAO (1993) Food and Agricultural Organization.‘‘Production Yearbook’’. FAO, Rome
  • Feller A, Machemer K, Braun EL, Grotewold E (2011) Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant J 66:94–116. doi:10.1111/j.1365-313X.2010.04459.x
  • Felsenstein J (1992) Estimating effective population size from samples of sequences: a bootstrap Monte Carlo integration method. Genet Res 60:209–220. doi:10.1017/S0016672300030962
  • Fuleki F (1988) Quantitative methods for anthocyanins. J Food Sci 33:72–77
  • Gama M, Leite R Jr, Cordeiro A, Cantliffe D (1996) Transgenic sweet potato plants obtained by Agrobacterium tumefaciens-mediated transformation. Plant Cell Tissue Organ Culture 46:231–244
  • Gao X, Chen Z, Zhang J, Li X, Chen G, Li X, Wu C (2012) OsLIS-L1 encoding a lissencephaly type-1-like protein with WD40 repeats is required for plant height and male gametophyte formation in rice. Planta 235:713–727. doi:10.1007/s00425-011-1532-7
  • Geourjon C, Deléage G (1995) SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci 11:681–684. doi:10.1093/bioinformatics/11.6.681
  • Gonzalez A, Zhao M, Leavitt JM, Lloyd AM (2008) Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J 53:814–827. doi:10.1111/j.1365-313X.2007.03373.x
  • Gould KS (2004) Nature’s Swiss army knife: the diverse protective roles of anthocyanins in leaves. J Biomed Biotechnol 2004:314–320. doi:10.1155/S1110724304406147
  • Halliwell B (2007) Dietary polyphenols: good, bad, or indifferent for your health? Cardiovasc Res 73:341–347. doi:10.1016/j.cardiores.2006.10.004
  • Han MJ, Jung KH, Yi G, Lee DY, An G (2006) Rice Immature Pollen 1 (RIP1) is a regulator of late pollen development. Plant Cell Physiol 47(11):1457–1472. doi:10.1093/pcp/pcl013
  • Kim CY, Ahn YO, Kim SH, Kim YH, Lee HS, Catanach AS, Jacobs JME, Conner AJ, Kwak SS (2010) The sweet potato IbMYB1 gene as a potential visible marker for sweet potato intragenic vector system. Physiol Plant 139:229–240. doi:10.1111/j.1399-3054.2010.01365.x
  • Koes R, Verweij W, Quattrocchio F (2005) Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci 10:236–242. doi:10.1016/j.tplants.2005.03.002
  • Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245. doi:10.1093/bioinformatics/17.12.1244
  • Kumar S, Jordan MC, Datla R, Cloutier S (2013) The LuWD40-1 gene encoding WD repeat protein regulates growth and pollen viability in flax (Linum Usitatissimum L.). PLoS One 8:e69124.doi:10.1371/journal.pone.0069124
  • Lalusin AG, Nishita K, Kim SH, Ohta M, Fujimura T (2006) A new MADS-box gene (IbMADS10) from sweet potato [Ipomoea batatas (L.) Lam] is involved in the accumulation of anthocyanin. Mol Gen Genomics 275:44–54. doi:10.1007/s00438-005-0080-x
  • Li J, Li XD, Zhang Y, Zheng ZD, Qu ZY, Liu M, Zhu SH, Liu S, Wang M, Qu L (2013) Identification and thermal stability of purple-fleshed sweet potato anthocyanins in aqueous solutions with various pH values and fruit juices. Food Chem 136:1429–1434. doi:0.1016/j.foodchem.2012.09.054
  • Luceri C, Giovannelli L, Pitozzi V, Toti S, Castagnini C, Routaboul JM, Lepiniec L, Larrosa M, Dolara P (2008) Liver and colon DNA oxidative damage and gene expression profiles of rats fed Arabidopsis thaliana mutant seeds containing contrasted flavonoids. Food Chem Toxicol 46:1213–1220. doi:10.1016/j.fct.2007.10.007
  • Mano H, Ogasawara F, Sato K, Higo H, Minobe Y (2007) Isolation of a regulatory gene of anthocyanin biosynthesis in tuberous roots of purple-fleshed sweet potato. Plant Physiol 143:1252–1268. doi:10.1104/pp.106
  • Mishra AK, Puranik S, Bahadur RP, Prasad M (2012a) The DNA-binding activity of an AP2 protein is involved in transcriptional regulation of a stress-responsive gene, SiWD40, in foxtail millet. Genomics 100:252–263. doi:10.1016/j.ygeno.2012.06.012
  • Mishra AK, Puranik S, Prasad M (2012b) Structure and regulatory networks of WD40 protein in plants. J Plant Biochem Biotechnol 21:S32–S39. doi:10.1007/s13562-012-0134-1
  • Mol J, Grotewold E, Koes R (1998) How genes paint flowers and seeds. Trends Plant Sci 3:212–217. doi:10.1016/S1360-1385(98)01242-4
  • Morita Y, Saitoh M, Hoshino A, Nitasaka E, Iida S (2006) Isolation of cDNAs for R2R3-MYB, bHLH and WDR transcriptional regulators and Identification of c and ca mutations conferring white flowers in the Japanese morning glory. Plant Cell Physiol 47:457–470. doi:10.1093/pcp/pcj012
  • Pang Y, Wenger JP, Saathoff K, Peel GJ, Wen J, Huhman D, Allen SN, Tang Y, Cheng X, Tadege M, Ratet P, Mysore KS, Sumner LW, Marks MD, Dixon RA (2009) A WD40 repeat protein from Medicago truncatula is necessary for tissue-specific anthocyanin and proanthocyanidin biosynthesis, but not for trichome development. Plant Physiol 151:1114–1129. doi:10.1104/pp.109.144022
  • Pattanaik S, Kong Q, Zaitlin D, Werkman JR, Xie CH, Patra B, Yuan L (2010) Isolation and functional characterization of a floral tissue-specific R2R3 MYB regulator from tobacco. Planta 231:1061–1076. doi:10.1007/s00425-010-1108-y
  • Roullier C, Duputié A, Wennekes P, Benoit L, Fernández Bringas VM, Rossel G, Tay D, McKey D, Lebot V (2013) Disentangling the origins of cultivated sweet potato [Ipomoea batatas (L.) Lam.]. PLoS One 8:e62707. doi:10.1371/journal.pone.0062707
  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425. doi:0737-4038/870404-0007
  • Schijlen EG, Ric de Vos CH, van Tunen AJ, Bovy AG (2004) Modification of flavonoid biosynthesis in crop plants. Phytochemistry 65:2631–2648. doi:10.1016/j.phytochem.2004.07.028
  • Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31:3381–3385. doi:10.1093/nar/gkg520
  • Schwinn K, Venail J, Shang Y, Mackay S, Alm V, Butelli E, Oyama R, Bailey P, Davies K, Martin C (2006) A small family of MYB regulatory genes controls floral pigmentation intensity and patterning in the genus Antirrhinum. Plant Cell 18:831–851. doi:10.1105/tpc.105.039255
  • Scott A, Wyatt S, Tsou PL, Robertson D, Allen NS (1999) Model system for plant cell biology: GFP imaging in living onion epidermal cells. Biotechniques 26(1125):1128–1132
  • Seeram NP, Adams LS, Hardy ML, Heber D (2004) Total cranberry extract versus its phytochemical constituents: antiproliferative and synergistic effects against human tumor cell lines. J Agric Food Chem 52:2512–2517. doi:10.1021/jf0352778
  • Selinger DA, Chandler VL (1999) A mutation in the pale aleurone color1 gene identifies a novel regulator of the maize anthocyanin pathway. Plant Cell 11:5–14. doi:10.1105/tpc.11.1.5
  • Shi DQ, Liu J, Xiang YH, Ye D, Sundaresan V, Yang WC (2005) SLOW WALKER1, essential for gametogenesis in Arabidopsis, encodes a WD40 protein involved in 18S ribosomal RNA biogenesis. Plant Cell 17:2340–2354. doi:10.1105/tpc.105.033563
  • Smith TF, Gaitatzes C, Saxena K, Neer EJ (1999) The WD repeat: a common architecture for diverse functions. Trends Biochem Sci 24:181–185. doi:10.1016/S0968-0004(99)01384-5
  • Sompornpailin K, Makita Y, Yamazak M, Saito K (2002) A WD-repeat containing putative regulatory protein in anthocyanin biosynthesis in Perilla frutescens. Plant Mol Biol 50:485–495. doi:10.1023/A:1019850921627
  • Takos AM, Jaffé FW, Jacob SR, Bogs J, Robinson SP, Walker AR (2006) Light-induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples. Plant Physiol 142:1216–1232. doi:10.1104/pp.106.088104
  • Walker AR, Davison PA, Bolognesi-Winfield AC, James CM, Srinivasan N, Blundell TL, Esch JJ, Marks MD, Gray JC (1999) The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein. Plant Cell 11:1337–1350. doi:10.1105/tpc.11.7.1337
  • Winkel-Shirley B (2001) Flavonoid biosynthesis. A colorful model for genetic, biochemistry, cell biology, and biotechnology. Plant Physiol 126:485–493. doi:10.1104/pp.126.2.485
  • Zhao M, Morohashi K, Hatlestad G, Grotewold E, Lloyd A (2008) The TTG1-bHLH-MYB complex controls trichome cell fate and patterning through direct targeting of regulatory loci. Development 135:1991–1999. doi:10.1242/dev.016873

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-f02c4990-740e-44ec-921d-41bb54e35a11
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.