PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 19 | 2 |

Tytuł artykułu

How do young bats find suitable swarming and hibernation sites? Assessing the plausibility of the maternal guidance Hhypothesis using genetic maternity assignment for two European bat species

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In many temperate zone bat species, large numbers of individuals aggregate in autumn at potential hibernacula such as caves, mines, and cellars, for a behaviour known as swarming. This autumn swarming probably serves two functions, the achievement of matings and the assessment of potential hibernation sites. Even though this remarkable behaviour has attracted a lot of research during the last decades, several central questions regarding the autumn swarming of temperate zone bats remain unanswered. One of them is how juvenile bats (defined here as young of the year) are able to find swarming sites, which are typically dozens of kilometres away from the maternity colonies where they had been born. In this study, we used a combination of field data and population genetic tools to assess whether the juveniles are likely to learn the location of swarming sites from their mothers. To obtain non-destructive wing-tissue samples for DNA-based maternity assignments, 170 Myotis daubentonii and 195 Myotis nattereri were captured during the swarming seasons in two subsequent years, at a large hibernaculum in Germany. Based on 14, respectively 13, highly polymorphic microsatellite loci, maternity assignment tests were conducted for all captured adult females and juveniles that had been born in the two respective years. For M. daubentonii we found four assigned mother-offspring pairs, whereas in M. nattereri, eight mother-offspring pairs could be assigned with high certainty. Moreover, among the latter species, in seven pairs the mothers and the assigned offspring were caught within ten minutes of one another on the same night. Using a simulation, we show that for M. nattereri, significantly more juveniles than expected are caught together with their mothers at the hibernacula. We discuss the implications of our findings with regard to understanding autumn swarming behaviour in temperate zone bats, as well as for the conservation of bats that depend on swarming sites for mating and hibernation.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

19

Numer

2

Opis fizyczny

p.319-327,fig.,ref.

Twórcy

autor
  • Ernst-Moritz-Arndt Universitat Greifswald, Zoological Institute and Museum, Loitzerstrasse 26, 17489 Greifswald, Germany
autor
  • Echolot GbR, Eulerstasse 12, 48155 Munster, Germany
autor
  • Ernst-Moritz-Arndt Universitat Greifswald, Zoological Institute and Museum, Loitzerstrasse 26, 17489 Greifswald, Germany
  • Ernst-Moritz-Arndt Universitat Greifswald, Zoological Institute and Museum, Loitzerstrasse 26, 17489 Greifswald, Germany
autor
  • Ernst-Moritz-Arndt Universitat Greifswald, Zoological Institute and Museum, Loitzerstrasse 26, 17489 Greifswald, Germany

Bibliografia

  • 1. Bauerová, Z., and J. Zima. 1988. Seasonal changes in visits to a cave by bats. Folia Zoologica, 37: 97–111. Google Scholar
  • 2. Benjamini, Y., and Y. Hochberg. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, 57B: 289–300. Google Scholar
  • 3. Bogdanowicz, W., K. Piksa, and A. Tereba. 2012. Genetic structure in three species of whiskered bats (genus Myotis) during swarming. Journal of Mammalogy, 93: 799–807. Google Scholar
  • 4. Brownstein, M. J., J. D. Carpten, and J. R. Smith. 1996. Modulation of non-templated nucleotide addition by Taq DNA polymerase: primer modifications that facilitate genotyping. Biotechniques, 20: 1004–1006. Google Scholar
  • 5. Burland, T., E. Barratt, and P. A. Racey. 1998. Isolation and characterization of microsatellite loci in the brown longeared bat, Plecotus auritus, and cross-species amplification within the family Vespertilionidae. Molecular Ecology, 7: 136–138. Google Scholar
  • 6. Burns, L. E., and H. G. Broders. 2015. Who swarms with whom? Group dynamics of Myotis bats during autumn swarming. Behavioral Ecology, 26: 866–876. Google Scholar
  • 7. Castella, V., and M. Ruedi. 2000. Characterization of highly variable microsatellite loci in the bat Myotis myotis (Chiroptera: Vespertilionidae). Molecular Ecology, 9: 1000–1002. Google Scholar
  • 8. Davis, W. H., and H. B. Hitchcock. 1965. Biology and migration of the bat, Myotis lucifugus, in New England. Journal of Mammalogy, 46: 296–313. Google Scholar
  • 9. Dekeukeleire, D., R. Janssen, A.-J. Haarsma, T. Bosch, and J. Van Schaik. 2016. Swarming behaviour, catchment area and seasonal movement patterns of the Bechstein's bats: implications for conservation. Acta Chiropterologica, 18: 349–358. Google Scholar
  • 10. Fenton, M. B. 1969. Summer activity of Myotis lucifugus (Chiroptera: Vespertilionidae) at hibernacula in Ontario and Quebec. Canadian Journal of Zoology, 47: 597–602. Google Scholar
  • 11. Furmankiewicz, J. 2008. Population size, catchment area, and sex-influenced differences in autumn and spring swarming of the brown long-eared bat (Plecotus auritus). Canadian Journal of Zoology, 86: 207–216. Google Scholar
  • 12. Furmankiewicz, J., K. Duma, K. Manias, and M. Borowiec. 2013. Reproductive status and vocalisation in swarming bats indicate a mating function of swarming and an extended mating period in Plecotus auritus. Acta Chiropterologica, 15: 371–385. Google Scholar
  • 13. Glover, A. M., and J. D. Altringham. 2008. Cave selection and use by swarming bat species. Biological Conservation, 141: 1493–1504. Google Scholar
  • 14. Halczok, T. K., K. Fischer, R. Gierke, V. Zeus, F. Meier, C. Tress, A. Balkema-Buschmann, S. J. Puechmaille, and G. Kerth. 2017. Evidence for genetic variation in Natterer's bats (Myotis nattereri) across three regions in Germany but no evidence for co-variation with their associated astroviruses. BMC Evolutionary Biology, 17: 5. Google Scholar
  • 15. Horáček, I., and J. Zima. 1978. Net-revealed cave visitation and cave-dwelling in European bats. Folia Zoologica, 27: 135–148. Google Scholar
  • 16. Jan, C., D. A. Dawson, J. D. Altringham, T. Burke, and R. K. Butlin. 2012. Development of conserved microsatellite markers of high cross-species utility in bat species (Vespertilionidae, Chiroptera, Mammalia). Molecular Ecology Resources, 12: 532–548. Google Scholar
  • 17. Kalinowski, S. T., M. L. Taper, and T. C. Marshall. 2007. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Molecular Ecology, 16: 1099–1106. Google Scholar
  • 18. Kerth, G. 2008. Causes and consequences of sociality in bats. Bioscience, 58: 737–746. Google Scholar
  • 19. Kerth, G., and J. Van Schaik. 2012. Causes and consequences of living in closed societies: lessons from a long-term socio-genetic study on Bechstein's bats. Molecular Ecology, 21: 633–646. Google Scholar
  • 20. Kerth, G., K. Safi, and B. Koenig. 2002. Mean colony relatedness is a poor predictor of colony structure and female philopatry in the communally breeding Bechstein's bat (Myotis bechsteinii). Behavioral Ecology and Sociobiology, 52: 203–210. Google Scholar
  • 21. Kerth, G., A. Kiefer, C. Trappmann, and M. Weishaar. 2003. High gene diversity at swarming sites suggest hot spots for gene flow in the endangered Bechstein's bat. Conservation Genetics, 4: 491–499. Google Scholar
  • 22. Krumreihn, E. 2010. Untersuchung zum Artenspektrum und zum Ausflugverhalten nach der Überwinterung am Fledermaus-Massenwinterquartier Brunnen Meyer in den Baumbergen (Westfälische Bucht). HNE Eberswalde, 55 pp. Google Scholar
  • 23. Loth, A. 2012. Untersuchungen zu Artenzusammensetzung und Ausflugverhalten von Fledermäusen am Quartier Brunnen Meyer (Westfälische Bucht) nach der Überwinterung 2010/2011. Philipps Universität Marburg, Marburg, 103 pp. Google Scholar
  • 24. Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89: 583–590. Google Scholar
  • 25. O'donnell, C. F., S. Richter, S. Dool, J. M. Monks, and G. Kerth. 2016. Genetic diversity is maintained in the endangered New Zealand long-tailed bat (Chalinolobus tuberculatus) despite a closed social structure and regular pop ulation crashes. Conservation Genetics, 17: 91–102. Google Scholar
  • 26. Park, S. D. E. 2001. Trypanotolerance in west African cattle and the populaion genetic effects of selection. Ph.D. Thesis, University of Dublin, Dublin, Ireland. Google Scholar
  • 27. Parsons, K. N., and G. Jones. 2003. Dispersion and habitat use by Myotis daubentonii and Myotis nattereri during the swarming season: implications for conservation. Animal Conservation, 6: 283–290. Google Scholar
  • 28. Parsons, K. N., G. Jones, and F. Greenaway. 2003. Swarming activity of temperate zone microchiropteran bats: effects of season, time of night and weather conditions. Journal of Zoology (London), 261: 257–264. Google Scholar
  • 29. Piksa, K. 2008. Swarming of Myotis mystacinus and other bat species at high elevation in the Tatra Mountains, southern Poland. Acta Chiropterologica, 10: 69–79. Google Scholar
  • 30. R Core Team. 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at www.r-project.org. Google Scholar
  • 31. Rivers, N. M., R. K. Butlin, and J. D. Altringham. 2005. Genetic population structure of Natterer's bats explained by mating at swarming sites and philopatry. Molecular Ecology, 14: 4299–4312. Google Scholar
  • 32. Rivers, N. M., R. K. Butlin, and J. D. Altringham. 2006. Autumn swarming behaviour of Natterer's bats in the UK: population size, catchment area and dispersal. Biological Con ser vation, 127: 215–226. Google Scholar
  • 33. Rousset, F. 2008. GENEPOP ‘007: a complete re-implementation of the GENEPOP software for Windows and Linux. Molecular Ecology Resources, 8: 103–106. Google Scholar
  • 34. Ruczyński, I., and K. A. Bartoń. 2012. Modelling sensory limitation: the role of tree selection, memory and information transfer in bats’ roost searching strategies. PLoS ONE, 7: e44897. Google Scholar
  • 35. Sachteleben, J. 1991. Zum ‘Invasions’ — Verhalten der Zwergfledermaus (Pipistrellus pipistrellus). Nyctalus (N.F.), 4: 51–66. Google Scholar
  • 36. Schmidt, K. A., J. Johansson, M. G. Betts, J.-M. Gaillard, and S. Kalisz. 2015. Information-mediated Allee effects in breeding habitat selection. The American Naturalist, 186: E162–E171. Google Scholar
  • 37. Scott, D. D., S. Fitzpatrick, D. A. Bailie, E. S. Boston, M. G. Lundy, D. J. Buckley, E. C. Teeling, W. I. Montgomery, and P. A. Prodöhl. 2013. Isolation and characterization of eight polymorphic microsatellite loci for Natterer's bat, Myotis nattereri (Vespertilionidae, Chiroptera). Conservation Genetics Resources, 5: 643–645. Google Scholar
  • 38. Trappmann, C. 2005. Die Fransenfledermaus in der Westfälischen Bucht. In Ökologie der Säugetiere, Band 3 ( P. Boye and H. Meinig, eds.). Laurenti Verlag, Bielefeld, 120 pp. Google Scholar
  • 39. Van Oosterhout, C., W. F. Hutchinson, D. P. M. Wills, and P. Shipley. 2004. Microchecker: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes, 4: 535–538. Google Scholar
  • 40. Van Schaik, J., and G. Kerth. 2017. Host social organization and mating system shape parasite transmission opportunities in three European bat species. Parasitology Research, 116: 589–599. Google Scholar
  • 41. Van Schaik, J., R. Janssen, T. Bosch, A.-J. Haarsma, J. J. Dekker, and B. Kranstauber. 2015. Bats swarm where they hibernate: compositional similarity between autumn swarming and winter hibernation assemblages at five underground sites. PLoS ONE, 10: e0130850. Google Scholar
  • 42. Veith, M., N. Beer, A. Kiefer, J. Johannesen, and A. Seitz. 2004. The role of swarming sites for maintainig gene flow in the brown long-eared bat (Plecotus auritus). Heredity, 93: 342–349. Google Scholar
  • 43. Verhoeven, K. J., K. L. Simonsen, and L. M. Mcintyre. 2005. Implementing false discovery rate control: increasing your power. Oikos, 108: 643–647. Google Scholar
  • 44. Wang, J. 2007. Triadic IBD coefficients and applications to estimating pairwise relatedness. Genetical Research, 89: 135–153. Google Scholar
  • 45. Wang, J. 2011. COANCESTRY: a program for simulating, estimating and analysing relatedness and inbreeding coefficients. Molecular Ecology Resources, 11: 141–145. Google Scholar

Typ dokumentu

Bibliografia

Identyfikator YADDA

bwmeta1.element.agro-f0164735-a12a-4899-b5b3-14b7ab4aa880
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.