PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 25 | 2 |

Tytuł artykułu

New approach for planning the mountain bike training with virtual coach

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Virtual technologies make a big step forward also in the world of mountain bike sport. Monitoring the progress of performances during sports training is the eternal desire of each competitive mountain biker. They can measure or analyse data directly from their trainings. As some previous study shows some sophisticated data analytical methods such as data mining are becoming increasingly useful tools in analysing sport performance and also by supporting decision making. For example on the basis of this specific data it is able to create algorithm for planning the sport specific training sessions. In this way sport applications may help also coaches to develop more sophisticated training program for their athletes. All this virtual technologies has led to the idea that they can put the concept of a complex computer system, which is virtual coach, which is based on the principle of cyclization/periodization of sports training. That will be also main focus in our study to show how virtual coaching may work for example for endurance athletes in our case mountain bikers.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

25

Numer

2

Opis fizyczny

p.69-74,ref.

Twórcy

autor
  • Faculty of Sport, Ljubljana, University of Ljubljana, Slovenia

Bibliografia

  • 1. Abbiss CR, Ross MLR, Garvican LA, et al. The distribution of pace adopted by cyclists during a cross-country mountain bike World Championships. J Sports Sci. 2013; 31(7): 787-794.
  • 2. Bonidia RP, Brancher JD, Busto RM. Data Mining in Sports: A Systematic Review. IEEE Lat Am Trans. 2018; 16(1): 232-239.
  • 3. Banister E, Calvert T. Planning for future performance: implications for long term training. Can J Appl Sport Sci. 1980; 5(3): 170-176.
  • 4. Borresen J, Lambert MI. The quantification of training load, the training response and the effect on performance. Sport Med. 2009; 39(9): 779-795.
  • 5. Cejuela R, Esteve-Lanao J. Training load quantification in triathlon. J Hum Sport Exerc. 2011; 6(2): 218-232.
  • 6. Fister I, Rauter S, Yang X-S, et al. Planning the sports training sessions with the bat algorithm. Neurocomputing. 2015; 149: 993-1002. DOI: 10.1016/j.neucom.2014.07.034.
  • 7. Fister Jr I, Fister I, Fister D, et al. Data Mining in Sporting Activities Created by Sports Trackers. In: SCBI 2013, International Symposium on Computational and Business Intelligence. IEEE; 2013: 88-91.
  • 8. Fister Jr I, Fister K, Fister D, et al. The importance of monitoring and maintaining data in sports training. In: Doupona Topič M, editor. Youth Sport: Proceedings of the 8th Conference for Youth Sport in Ljubljana, 9-10 December 2016. Ljubljana: University of Ljubljana, Faculty of Sport; 2016: 38-42.
  • 9. Fister Jr I, Rauter S, Fister K, et al. Planning Fitness Training Sessions Using the Bat Algorithm. In: Yaghob J, editor. Information Technologies – Application and Theory, 15th Conference ITAT 2015. Slovenský Raj, Slovakia: CEUR Workshop Proceedings; 2015: 121-126.
  • 10. Green BC, Jones I. Serious Leisure, Social Identity and Sport Tourism. Sport Soc. 2005; 8(2): 164-181.
  • 11. Impellizzeri FM, Marcora SM. The Physiology of Mountain Biking. Sport Med. 2007; 37(1): 59-71.
  • 12. Klika R, Alderdice M, Kvale J, et al. Efficacy of cycling training based on a power field test. J Strength 2007; 21(1): 265-269.
  • 13. Macdermid PW, Stannard S. Mechanical work and physiological responses to simulated cross country mountain bike racing. J Sports Sci. 2012; 30(14): 1491-1501.
  • 14. Novatchkov H, Bichler S, Tampier M, et al. Real-time training and coaching methods based on ubiquitous technologies – an illustration of a mobile coaching framework. Int J Comput Sci Sport. 2011; 10(1): 36-50.
  • 15. Ofoghi B, Zeleznikow J, MacMahon C, Raab M. Data mining in elite sports: a review and a framework. Meas Phys Educ Exerc Sci. 2013; 17(3): 171-186.
  • 16. Padilla S, Mujika I, Orbañanos J, et al. Exercise intensity during competition time trials in professional road cycling. Med Sci Sports Exerc. 2000; 32(4): 850-856.
  • 17. Prins L, Terblanche E, Myburgh KH. Field and laboratory correlates of performance in competitive cross-country mountain bikers. J Sports Sci. 2007; 25(8): 927-935.
  • 18. Rauter S, Doupona Topič M, Fister Jr I. Mobile sport applications can make our cycling more sociable. In: Doupona Topič M, Kajtna T, editors. Youth Sport: Proceedings of the 7th Conference for Youth Sport. Ljubljana: University of Ljubljana, Faculty of Sport; 2000: 102-107.
  • 19. Rauter S, Doupona Topič M. Perspectives of the sport-oriented public in Slovenia on extreme sports. Ekstremni sportovi u percepciji Slovenske sportske javnosti. Kinesiology. 2011; 43(1): 82-90.
  • 20. Rauter S, Fister I, Fister Jr I. How to Deal with Sports Activity Datasets for Data Mining and Analysis: Some Tips and Future Challenges. Int J Adv Pervasive Ubiquitous Comput. 2015; 7(2): 27-37.
  • 21. Rodríguez-Marroyo JA, Villa G, García-López J, et al. Comparison of Heart Rate and Session Rating of Perceived Exertion Methods of Defining Exercise Load in Cyclists. J Strength Cond Res. 2012; 26(8): 2249-2257.
  • 22. Rønnestad B, Mujika I. Optimizing strength training for running and cycling endurance performance: a review. Scand J Med Sci Sports. 2014; 24(4): 603-612.
  • 23. Roos L, Taube W, Brandt M, et al. Monitoring of daily training load and training load responses in endurance sports: What do coaches want? Schweizerische Zeitschrift für Sport und Sport. 2013; 61(4): 30-36.
  • 24. Shipway R, Jones I. The Great Suburban Everest: An “Insiders” Perspective on Experiences at the 2007 Flora London Marathon. J Sport Tour. 2008; 13(1): 61-77. DOI: 10.1080/14775080801972213.
  • 25. Stagno K, Thatcher R, van Someren K. A modified TRIMP to quantify the in-season training load of team sport players. J Sports Sci. 2007; 25(6): 629-634.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-ecb4c11b-baa9-4d37-8700-dc84fc4b9da2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.