PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 18 | 1 |

Tytuł artykułu

A nanoformulation of siRNA and its role in cancer therapy: In vitro and in vivo evaluation

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Overexpression of anti-apoptotic Bcl-2 is often observed in a wide variety of human cancers. It prevents the induction of apoptosis in neoplastic cells and contributes to resistance to chemotherapy. RNA interference has emerged as an efficient and selective technique for gene silencing. The potential to use small interfering RNA (siRNA) as a therapeutic agent for the treatment of cancer has elicited a great deal of interest. However, insufficient cellular uptake and poor stability have limited its therapeutic applications. The purpose of this study was to prepare chitosan nanoparticles via ionic gelation of chitosan by tripolyphosphate for effective delivery of siRNA to silence the anti-apoptotic Bcl-2 gene in neoplastic cells. Chitosan nanoparticles loaded with siRNA were in the size range 190 to 340 nm with a polydispersive index ranging from 0.04 to 0.2. They were able to completely bind with siRNA, provide protection against nuclease degradation, and enhance the transfection. Cell culture studies revealed that nanoparticles with entrapped siRNA could efficiently silence the antiapoptotic Bcl-2 gene. Studies on Swiss albino mice showed that siRNA could be effectively delivered through nanoparticles. There was significant decrease in the tumor volume. Blocking the expression of anti-apoptotic Bcl-2 can enhance the sensitivity of cancerous cells to anti-cancer drugs and the apoptosis rate. Therefore, nanoformulations with siRNA can be promoted as an adjuvant therapy in combination with anti-cancer drugs.

Wydawca

-

Rocznik

Tom

18

Numer

1

Opis fizyczny

p.120-136,fig.,ref.

Twórcy

autor
  • Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India-576104
autor
  • Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India-576104
  • Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India-576104
  • Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India-576104
autor
  • Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India-576104

Bibliografia

  • 1. Lowe, S.W. and Lin, A.W. Apoptosis in cancer. Carcinogenesis 21 (2000) 485-496.
  • 2. Chandra, J. and Kaufmann, S.H. Apoptotic pathways in cancer progression and treatment, in: Signal Transduction and Human Disease (Finkel, T. and Gutkind, J.S. Eds.), John Wiley & Sons, Inc., Hoboken, NJ, USA. (2003) 143-170. DOI: 10.1002/0471482706.ch4.
  • 3. Fulda, S., Meyer, E. and Debatin, K.M. Inhibition of TRAIL-induced apoptosis by Bcl-2 overexpression. Oncogene 21 (2002) 2283-2291.
  • 4. Reed, J.C. Apoptosis-targeted therapies for cancer. Cancer Cell 3 (2003) 17-30.
  • 5. Brown, J.M. and Attardi, L.D. The role of apoptosis in cancer development and treatment response. Nat. Rev. Cancer 5 (2005) 231-237.
  • 6. Vousden, K.H. Activation of the p53 tumor suppressor protein. Biochim. Biophys. Acta-Rev. Cancer 1602 (2002) 47-59.
  • 7. Brown J.M. and Wouters, B.G. Apoptosis, p53, and tumor cell sensitivity to anticancer agents. Cancer Res. 59 (1999) 1391-1404.
  • 8. Banic, B., Nipic, D., Suput, D., Milisav, I. DMSO modulates the pathway of apoptosis triggering. Cell. Mol. Biol. Lett. 16 (2011) 328-341.
  • 9. Adams J. M. and Cory, S. The Bcl-2 protein family: arbiters of cell survival. Science 281 (1998) 1322-1345.
  • 10. Cory, S., Huang, D.C.S. and Adams, J.M. The Bcl-2 family: roles in cell survival and oncogenesis. Oncogene 22 (2003) 8590-8607.
  • 11. Reed, J.C. Dysregulation of apoptosis in cancer. J. Clin. Oncol. 17 (1999) 2941-2961.
  • 12. Oda, E., Ohki, R., Murasawa, H., Nemoto, J., Shibue, T., Yamashita, T., Tokino, T. and Taniguchi, T. Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 288 (2000) 1053-1061.
  • 13. Bouillet, P., Cory, S., Zhang, L.C., Strasser, A. and Adams, J.M. Degenerative disorders caused by Bcl-2 deficiency prevented by loss of its BH3-only antagonist Bim. Dev. Cell 1 (2001) 645-653.
  • 14. Sattler, M., Liang, H., Nettesheim, D., Meadows, R.P., Harlan, J.E., Eberstadt, M., Yoon, H.S., Shuker, S.B., Chang, B.S. and Minn, A.J. Structure of Bcl-xLBak peptide complex: recognition between regulators of apoptosis. Science 275 (1997) 983-994.
  • 15. Kelekar A. and Thompson, C.B. Bcl-2-family proteins: the role of the BH3 domain in apoptosis. Trends Cell Biol. 8 (1998) 324-330.
  • 16. Meier, P., Finch A. and Evan, G. Apoptosis in development. Nature 6805 (2000) 796-801.
  • 17. Oltersdorf, T., Elmore, S.W., Shoemaker, A.R., Armstrong, R.C., Augeri, D.J., Belli, B.A., Bruncko, M., Deckwerth, T.L., Dinges, J. and Hajduk, P.J. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435 (2005) 677-681.
  • 18. Tan, F.L. and Yin, J.Q. Application of RNAi to cancer research and therapy. Front Biosci. 10 (2005) 1946-1960.
  • 19. Abdelrahim, M., Safe, S., Baker, C. and Abudayyeh, A. RNAi and cancer: Implications and applications. Int. J. RNA Gene Target Res. 2 (2006) 136-152.
  • 20. Akhtar, S. and Benter, I.F. Nonviral delivery of synthetic siRNAs in vivo. J. Clin. Invest. 117 (2007) 3623-3632.
  • 21. Bozkir, A. and Saka, O.M. Chitosan nanoparticles for plasmid DNA delivery: effect of chitosan molecular structure on formulation and release characteristics. Drug Deliv. 11 (2004) 107-112.
  • 22. Mao, H.Q., Roy, K., Troung-Le, V.L., Janes, K.A., Lin, K.Y., Wang, Y., August, J.T. and Leong, K.W. Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency. J. Control. Release 70 (2001) 399-421.
  • 23. Katas, H. and Alpar, H.O. Development and characterisation of chitosan nanoparticles for siRNA delivery. J. Control. Release 115 (2006) 216-225.
  • 24. Agnihotri, S.A., Mallikarjuna N.N. and Aminabhavi, T.M. Recent advances on chitosan-based micro-and nanoparticles in drug delivery, J. Control. Release 100 (2004) 5-28.
  • 25. Roy, K., Mao, H.Q., Huang, S.K. and Leong, K.W. Oral gene delivery with chitosan-DNA nanoparticles generates immunologic protection in a murine model of peanut allergy. Nat. Med. 5 (1999) 387-397.
  • 26. Jagani, H.V., Josyula, V.R., Hariharapura, R.C., Palanimuthu, V.R. and Gang, S.S. M. Nanoformulation of siRNA silencing Bcl-2 gene and its implication in cancer therapy, Arzneimittel-Forsch. 61 (2011) 577-591.
  • 27. Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65 (1983) 55-63.
  • 28. Denizot, F. and Lang, R. Rapid colorimetric assay for cell growth and survival: Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J. Immunol. Methods 89 (1986) 271-277.
  • 29. Mullis, K.B. Process for amplifying nucleic acid sequences. Google Patents (1987).
  • 30. Mullis, K.B., Faloona, F.A., Scharf, S.J., Saiki, R.K., Horn, G.T. and Erlich, H. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harbor Symp. Quant. Biol. 51 (1986) 263-273.
  • 31. Lanciotti, R.S., Calisher, C.H., Gubler, D.J., Chang, G J. and Vorndam, A.V. Rapid detection and typing of dengue viruses from clinical samples by using reverse transcriptase-polymerase chain reaction. J. Clin. Microbiol. 30 (1992) 545-560.
  • 32. Burnette, W.N. Western blotting: Electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal. Biochem. 112 (1981) 195-203.
  • 33. De Martimprey, H., Bertrand, J.R., Fusco, A., Santoro, M., Couvreur, P., Vauthier, C. and Malvy, C. siRNA nanoformulation against the ret/PTC1 junction oncogene is efficient in an in vivo model of papillary thyroid carcinoma. Nucleic Acids Res. 36 (2008) e2-e2.
  • 34. Goodsell, D.S. The molecular perspective: Bcl-2 and apoptosis. The Oncologist 7 (2002) 259-260.
  • 35. Ma, W.W. and Adjei, A.A. Novel agents on the horizon for cancer therapy. CA Cancer J. Clin. 59 (2009) 111-137.
  • 36. Howard, K.A., Rahbek, U.L., Liu, X., Damgaard, C.K., Glud, S.Z., Andersen, M.A., Hovgaard, M.B., Schmitz, A., Nyengaard, J.R. and Besenbacher, F. RNA interference in vitro and in vivo using a chitosan/siRNA nanoparticle system. Mol. Ther. 14 (2006) 476-484.
  • 37. Lee, D., Zhang, W., Shirley, S.A., Kong, X., Hellermann, G.R., Lockey, R.F. and Mohapatra, S.S. Thiolated chitosan/DNA nanocomplexes exhibit enhanced and sustained gene delivery. Pharm. Res. 24 (2007) 157-167.
  • 38. Verma, N.K., Davies, A.M., Long, A., Kelleher, D. and Volkov, Y. STAT3 knockdown by siRNA induces apoptosis in human cutaneous T-cell lymphoma line Hut78 via downregulation of Bcl-xL. Cell. Mol. Biol. Lett. 15 (2010) 342-355.
  • 39. Akhtar, S. and Benter, I.F. Nonviral delivery of synthetic siRNAs in vivo. J. Clin. Invest. 117 (2007) 3623-3643.
  • 40. Mao, S., Sun, W. and Kissel, T. Chitosan-based formulations for delivery of DNA and siRNA. Adv. Drug Delivery Rev. 62 (2010) 12-27.
  • 41. Dass, C.R. and Choong, P.F.M. The use of chitosan formulations in cancer therapy. J. Microencapsul. 25 (2008) 275-279.
  • 42. De La Fuente, M., Ravi, A.M., Paolicelli, P., Sanchez, A., Seijo, B. and Alonso, M.J. Chitosan-based nanostructures: a delivery platform for ocular therapeutics. Adv. Drug Delivery Rev. 62 (2010) 100-117.
  • 43. Kim, T.H., Jiang, H.L., Jere, D., Park, I.K., Cho, M.H., Nah, J.W., Choi, Y.J., Akaike, T. and Cho, C.S. Chemical modification of chitosan as a gene carrier in vitro and in vivo. Prog. Polym. Sci. 32 (2007) 726-753.
  • 44. Spandana, K., Hitesh, J., Vasanth, R.P., Jesil, M.A., Mallikarjuna, R.C. and Venkata R.J. In vitro and in vivo evaluation of the efficacy of nanoformulation of siRNA as an adjuvant to improve the anticancer potential of cisplatin. Exp. Mol. Pathol. 2012; http://dx.doi.org/10.1016/j.yexmp.2012.10.007.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-eca76dd5-c182-460a-8400-0723536dc4a4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.