PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 78 | 4 |

Tytuł artykułu

Calcium release from intracellular stores is involved in mitochondria depolarization after lowering extracellular pH in rat brain synaptosomes

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In the brain, pH can be lowered in both healthy and disease states. Previously, we showed that moderate extracellular acidification (down to pHo 7.0), but not intracellular acidification, leads to mitochondrial depolarization in synaptosomes. This indicates that the plasma membranes of neuronal presynaptic endings have proton receptors that can induce mitochondrial dysfunction when activated. In the present paper we attempt to identify this hypothetical receptor. First, we have demonstrated that lowering pHo to 7.0 does not induce sodium influx as monitored by the fluorescent dye Sodium Green. This fact, in conjunction with the absence of calcium influx in the same conditions – demonstrated previously, excludes ion channels as possible receptors. However, we showed that acidification‑induced mitochondrial depolarization is sensitive to thapsigargin – an inhibitor of calcium release from intracellular stores, U73122 – an inhibitor of phospholipase C, as well as Cu2+ and Zn2+, which can block the metabotropic proton receptor ovarian cancer G protein‑coupled receptor 1 (OGR1). Furthermore, using fluorescent dye Fluo‑3 we have demonstrated that moderate extracellular acidification induces a cytosolic calcium increase. Excess calcium was scavenged by mitochondria (monitored by fluorescent dye Rhod‑2). Our results suggest that the metabotropic OGR1 is a hypothetical presynaptic receptor for low pH. Its activation leads to phospholipase C activation and calcium release from the endoplasmic reticulum followed by accumulation in mitochondria, which likely causes a decrease in mitochondrial membrane potential.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

78

Numer

4

Opis fizyczny

p.343-351,fig.,ref.

Twórcy

  • Laboratory of Biophysics and Engineering of Cell, Institute of Biophysics and Cell Engineering, Minsk, Belarus
  • Laboratory of Biophysics and Engineering of Cell, Institute of Biophysics and Cell Engineering, Minsk, Belarus
autor
  • Department of Pharmacology, University of Oxford, Oxford, U.K.
  • Laboratory of Biophysics and Engineering of Cell, Institute of Biophysics and Cell Engineering, Minsk, Belarus

Bibliografia

  • Aksentsev SL, Levko AV, Fedorovich SV, Orlov SN, Konev SV (1998) Acidosis inhibits oxidative phosphorylation in intrasynaptosomal mitochondria by releasing calcium from cytoplasmic store (in Russian). Biofizika 43: 315–318.
  • Alekseenko AV, Lemeshchenko VV, Pekun TG, Waseem TV, Fedorovich SV (2012) Glutamate‑induced free radical formation in rat brain synapto‑ somes is not dependent on intrasynaptosomal mitochondria mem‑ brane potential. Neurosci Lett 513: 238–242.
  • Cottet‑Rousselle C, Ronot X, Leverve X, Mayol JF (2011) Cytometric as‑ sessment of mitochondria using fluorescent probes. Cytometry A 79: 405–425.
  • Drapeau P, Nachshen DA (1988) Effects of lowering extracellular and cy‑ tosolic pH on calcium fluxes, cytosolic calcium levels, and transmitter release in presynaptic nerve terminals isolated from rat brain. J Gen Physiol 91: 305–315.
  • Emaus RK, Grunwald R, Lemasters JJ (1986) Rhodamine 123 as a probe of transmembrane potential in isolated rat liver mitochondria: spectral and metabolic properties. Biochim Biophys Acta 850: 436–448.
  • Fedorovich SV, Aksentsev SL, Konev SV (1996) Acidosis inhibits calcium ac‑ cumulation in intrasynaptosomal mitochondria. Acta Neurobiol Exp 56: 703–706.
  • Fedorovich SV, Waseem TV, Puchkova LV (2017) Biogenetic and morpho‑ functional heterogeneity of mitochondria: the case of synaptic mito‑ chondria. Rev Neurosci 28: 363–373.
  • Hajos F (1975) An improved method for the preparation of synaptosomal fractions in high purity. Brain Res 93: 485–489.
  • Hofmeijer J, van Putten MJAM (2012) Ischemic cerebral damage an apprais‑ al of synaptic failure. Stroke 43: 607–615.
  • Hrynevich SV, Pekun TG, Waseem TV, Fedorovich SV (2015) Influence of glucose deprivation on membrane potentials of plasma membranes, mitochondria and synaptic vesicles in rat brain synaptosomes. Neuro‑ chem Res 40: 1188–1196.
  • Hrynevich SV, Waseem TV, Fedorovich SV (2017) Estimation of mitochon‑ drial calcium pool in rat brain synaptosomes using fluorescent dye Rhod‑2 AM (in Russian). Biofizika 62: 89–92.
  • Huang W‑C, Swietach P, Vaughan‑Jones RD, Ansorge O, Glitsch MD (2008) Extracellular acidification elicits spatially and temporally distinct Ca2+ signals. Curr Biol 18: 781–785.
  • Iadecola C (2013) The pathobiology of vascular dementia. Neuron 80: 844–866.
  • Kraig RP, Chesler M (1990) Astrocytic acidosis in hyperglycemic and com‑ plete ischemia. J Cereb Blood Flow Metab 10: 104–114.
  • Kuznetsova TG, Fedorovich SV, Waseem TV (2005) Investigation of structur‑ al‑functional properties of cell membranes by atomic forces methods (in Russian). Med J 13: 80–81.
  • Levin LR, Buck J (2015) Physiological roles of acid‑base sensors. Annu Rev Physiol 77: 347–362.
  • Levko AV, Aksentsev SL, Fedorovich SV, Konev SV (1998) Effect of calcium on the energy status of rat brain synaptosomes under acidosis. Bio‑ chemistry 63: 180–184.
  • Levko AV, Rakovich AA, Samoilenko SG, Konev SV (2003) Characteristics of the hypoosmosis‑induced calcium response in isolated nerve terminals of rat brain. Med Sci Monit 9: BR115–124.
  • Lowry O, Rosenbrough H, Farr H, Randall R (1951) Protein measurements with Folin reagent. J Biol Chem 193: 265–275.
  • Ludwig M‑G, Vanek M, Guerini D, Gasser JA, Jones CE, Junker U, Hofstetter H, Wolf RM, Seuwen K (2003) Proton‑sensing G‑protein‑coupled receptors. Nature 425: 93–98.
  • Mattson MP (2015) Late‑onset dementia: a mosaic of prototypical patholo‑ gies modifiable by diet and lifestyle. Aging Mech Dis 1: 15003. Nachshen DA, Drapeau P (1988) The regulation of cytosolic pH in isolated presynaptic nerve terminals from rat brain. J Gen Physiol 91: 289–303.
  • Nedergaard  M, Goldman SA, Desai S, Pulsinelli WA (1991) Acid‑induced death in neurons and glia. J Neurosci 11: 2489–2497.
  • Nicholls DG (2017) Brain mitochondrial calcium transport: origins of the set‑point concept and its application to physiology and pathology. Neu‑ rochem Int 109: 5–12.
  • Obara M, Szeliga M, Albrecht J (2008) Regulation of pH in the mammalian central nervous system under normal and pathological conditions: fact and hypothesis. Neurochem Int 52: 905–919.
  • Palmer MJ, Hull C, Vigh J, von Gersdorff H (2003) Synaptic cleft acidification and modulation of short‑term depression by exocytosed protons in ret‑ inal bipolar cells. J Neurosci 23: 11332–11341.
  • Pekun TG, Lemeshchenko VV, Lyskova TI, Waseem TV, Fedorovich SV (2013) Influence of intra‑ and extracellular acidification on free radical formation and mitochondria membrane potential in rat brain synapto‑ somes. J Mol Neurosci 49: 211–222.
  • Pekun TG, Hrynevich SV, Waseem TV, Fedorovich SV (2014) Role of iron, zink and reduced glutathione in oxidative stress induction by low pH in rat brain synaptosomes. SpringerPlus 3: 560.
  • Price MP, Snyder PM, Welsh MJ (1996) Cloning and expression of a novel human brain Na+ channel. J Biol Chem 271: 7879–7882.
  • Rizzuto R, De Stefani D, Raffaelo A, Mammucari C (2012) Mitochondria as sensors and regulators of calcium signaling. Nature Rev Mol Cell Biol 13: 566–578.
  • Saadoun S, Lluch M, Rodriguez‑Alvarez J, Blanco I, Rodriguez R (1998) Ex‑ tracellular acidification modifies Ca2+ fluxes in rat brain synaptosomes. Biochem Biophys Res Comm 242: 123–128.
  • Sinning A, Hubner CA (2013) Minireview: pH and synaptic transmission. FEBS Lett 587: 1923–1928.
  • Smith TL (1990) Regulation of intrasynaptosomal free calcium concentra‑ tions: studies with the fluorescent indicator, fluo‑3. Neurochem Int 16: 89–94.
  • Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, Hansen LA, Katzman R (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30: 572–580.
  • Thomas AP, Delaville F (1991) The use of fluorescent indictors for mea‑ surements of cytosolic‑free calcium concentration in cell populations and single cells, in: McCormack JG, Cobbold PH (Eds.) Cellular calcium. A practical approach. Oxford University Press, Oxford, pp 1–54.
  • Tombaugh GC, Sapolsky RM (1993) Evolving conception about the role of acidosis in ischemic neuropathology. J Neurochem 61: 793–803.
  • Vaz SH, Cristovao‑Ferreira S, Ribeiro JA, Sebastiao AM (2008) Brain‑derived neurotrophic factor inhibits GABA uptake by the rat hippocampal nerve terminals. Brain Res 1219: 19–25.
  • Voglis G, Tavernarakis N (2008) A synaptic DEG/ENaC ion channel medi‑ ates learning in C. elegans by facilitating dopamine signaling. EMBO J 27: 3288–3299.
  • Wang Y, O’Bryant Z, Wang H, Huang Y (2016) Regulating factors in ac‑ id‑sensing ion channels 1a function. Neurochem Res 41: 631–645.
  • Waseem TV, Kolos VA, Lapatsina LP, Fedorovich SV (2007) Hypertonic shrinking but not hypotonic swelling increases sodium concentration in rat brain synaptosomes. Brain Res Bull 73: 135–142.
  • Wei WC, Jacobs B, Becker EB, Glitsch MD (2015) Reciprocal regulation of two G protein‑coupled receptors sensing extracellular concentrations of Ca2+ and H+. Proc Natl Acad Sci 112: 10738–10743.
  • Wemmie JA, Taugher RJ, Kreple CJ (2013) Acid‑sensing ion channels in pain and disease. Nature Rev Neurosci. 14: 461–471.
  • Wilhelm BG, Mandad S, Truckenbrodt S, Kronhert K, Schafer C, Rammer B, Koo SJ, Clasen GA, Krauss M, Haucke V, Urlaub H, Rizzoli SO (2014) Composition of isolated synaptic boutons reveals the amounts of vesi‑ cle trafficking proteins. Science 344: 1023–1028.
  • Xiong ZG, Zhu XM, Minami M, Hey J, Wei WL, MacDonald JF, Wemmie JA, Price  MP, Welsh MJ, Simon RP (2004) Neuroprotection in ischemia: blocking calcium‑permeable acid‑sensing ion channels. Cell 118: 687–698.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-ebe5e00e-a30e-456a-9a2e-7cc142f9d9ca
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.