PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 25 | 4 |

Tytuł artykułu

Application of selected methods of artificial intelligence to activated sludge settleability predictions

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In the study, the results of measurements of inflow (Q), wastewater temperature in the chamber (T), a degree of external (RECext) and internal (RECint) recirculation in the biological-mechanical wastewater treatment plant in Cedzyna near Kielce, Poland were used to make predictions of settleability of activated sludge. Three methods, namely genetic programming, the Support Vector Machines method and artificial neural networks were employed to compute activated sludge settleability. The results of analyses indicate that artificial neural networks demonstrate the best predictive abilities. That is confirmed by the values of parameters that describe simulation fit to sludge settleability measurement data for inputs of concern.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

25

Numer

4

Opis fizyczny

p.1709-1714,fig.,ref.

Twórcy

autor
  • Faculty of Environmental, Geomatic and Energy Engineering, Kielce University of Technology, Av. Tysiaclecia Panstwa Polskiego 7, 25-314 Kielce, Poland
autor
  • Faculty of Environmental, Geomatic and Energy Engineering, Kielce University of Technology, Av. Tysiaclecia Panstwa Polskiego 7, 25-314 Kielce, Poland

Bibliografia

  • 1. KALINOWSKA E., BONAR G., DUMA J. Principles and practice of wastewater treatment, LEMTECH Konsulting, Kraków 2005 [in Polish]
  • 2. KOCWA-HALUCH R., WOŹNIAKIEWICZ T. Microscopy analysis of activated sludge and its role in the wastewater treatment technological process control. Czasopismo Techniczne Środowisko, 6 (106), 141, 2011 [in Polish].
  • 3. http://www.e-biotechnologia.pl/Artykuly/Wastewatertreatment-activated-sludge-method /2015-07-29 [in Polish]
  • 4. IMHOFF K.K. Urban drainage and wastewater treatment. Oficyna Wydawnicza Projprzem-EKO, Bydgosz 1996 [in Polish].
  • 5. ROMANOWICZ R.J., KICZKO A., NAPIÓRKOWSKI J.J. Stochastic Transfer Function Simulator of a 1-D Flow Routing. Publs. Inst. Geophys. Pol. Acad. Sc., E-10, 406, 151, 2008.
  • 6. BOGER Z. Experience in Developing Models of Industrial Plants by Large Scale Artificial Neural Networks. Intelligent Process Control Systems, 326, 1995.
  • 7. CHUCHRO M. Prediction of biogas production in separate digesters chambers from wastewater treatment plant. Polish Journal of Environmental Studies, 21 (5A), 31, 2012.
  • 8. ZHANG R., HU X. Effluent Quality Prediction of Wastewater Treatment System Based on Small-world Ann. Journal of Computers, 7 (9), 2136, 2012.
  • 9. ELNEKAVE M., CELIK S.O., TATLIER M., TUFEKCI N. Artificial Neural Network Predictions of Up – Flow Anaerobic Sludge Blanket (UASB) Reactor Performance in the Treatment of Citrus Juice Wastewater. Polish Journal of Environment Study. 21 (1), 49, 2012.
  • 10. HONG Y.S. T., BHAMIDIMARRI R. Evolutionary selforganising modelling of a municipal wastewater treatment plant. Water Research, 37 (6), 1199, 2003.
  • 11. YANG Y.H., GUERGACHI A., KHAN G. Support Vector Machines for Environmental Informatics: Application to Modelling the Nitrogen Removal Processes in Wastewater Treatment Systems, Journal of Environmental Informatics 7 (1), 14, 2012.
  • 12. VERMA A., WEI X., KUSIAK A. Predicting the total suspended solids in wastewater: A data-mining approach. Engineering Applications of Artificial Intelligence, 26 (4), 1366, 2013.
  • 13. KUSIAK A., ZENG Y., ZHANG Z. Modeling and analysis of pumps in a wastewater treatment plant: A data-mining approach. Engineering Applications of Artificial Intelligence 26 (4), 1643, 2013.
  • 14. DELLANA S.A., WEST D. Predictive modeling for wastewater applications: Linear and nonlinear approaches. Environmental Modelling & Software, 24 (1), 2009.
  • 15. KIANMEHR P., MANSOOR W., KFOURY F.A. Prediction of Biogas Generation Profiles in Wastewater Treatment Plants Using Neural Networks. Journal of Clean Energy Technologies, 2 (3), 201, 2014.
  • 16. WEI X., KUSIAK A. Optimization of Biogas Production Process in a Wastewater Treatment Plant. Proceedings of the 2012 Industrial and Systems Engineering Research Conference 2012.
  • 17. GIOKAS D.L., KIM Y., PARASKEVAS P.A., PALEOLOGOS E.K., LEKKAS T.D. A simple empirical model for active sludge thickening clarifiers. Water Research, 36, 3245, 2002.
  • 18. GIOKAS D.L., DAIGGERB G.T., SPERLINGC M. Comparison and evaluation of empirical zone settling velocity parameters based on sludge volume index using a unified settling characteristics database. Water Research, 37, 3821, 2003.
  • 19. STAMOU A.I., GIOKAS D.L., PARASKEVAS P.A. Validation and application of a simple model for circulation secondary settling tanks. Global NEST Journal, 10 (1), 62, 2008.
  • 20. VAPNIK V. Statistical Learning Theory. John Wiley and Sons. New York, 1998.
  • 21. BURGES C. A tutorial on support vector machines for pattern recognition (Knowledge discovery and data mining, Usama Fayyad), Kluwer, 1, 2000.
  • 22. KOZA J.R. Genetic Programming: On the Programming of Computers by Natural Selection, MIT Press, Cambridge, MA. 1992.
  • 23. RUTKOWSKA D., PILIŃSKI M., RUTKOWSKI L. Neural networks, genetic algorithms and fuzzy systems, Wydawnictwo Naukowe PWN, 1997 [in Polish]
  • 24. RAHA D. Exploring Artificial Neural Networks (ANN) Modelling for a Biological Nutrient Removal (BNR) Wastewater Treatment Plant (STP) to Forecast Effluent Suspended Solids, Copyright by Indian Chemical Engineering, 49 (3), 205, 2007.
  • 25. RUTKOWSKI L. Flexible neuro-fuzzy systems: structures, learning and performance evaluation. Springer Science & Business Media. Kluwer Academic Publisher, 2004

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-ebbb1bd0-f2ea-463d-9dbf-97cb88ec60db
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.