PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2014 | 60 | 4 |

Tytuł artykułu

Plant defense responses against viral and bacterial pathogen infections. Focus on RNA-binding proteins (RBPs)

Treść / Zawartość

Warianty tytułu

PL
Odpowiedź obronna roślin przed zakażeniem wirusowym i bakteryjnym - rola białek wiążących RNA (RBPs)

Języki publikacji

EN

Abstrakty

EN
Plants have developed intricate defense mechanisms against pathogen infections. Immune system of medicinal plants is well developed. The molecular mechanisms of their ability to protect themselves are not fully understood. Little is known about RNA-binding proteins (RBPs) present in medicinal plants. However, CmGRP1 is an RBP found in the milky sap of medicinal plant Chelidonium majus L. what implies possible importance of RBPs in plant immunity. In this review recent insights into the role of plant RBPs in antiviral and antibacterial defense responses are discussed.
PL
Rośliny wykształciły szereg mechanizmów obronnych przed zakażeniem patogenem. System obronny roślin leczniczych jest dobrze rozwinięty, na co wskazuje ich odpowiedź przeciw różnym infekcjom. Jednak mechanizmy molekularne tych odpowiedzi nie są do końca poznane. Jak dotąd niewiele wiadomo na temat białek wiążących RNA (RBPs) z roślin leczniczych. Jednym z takich białek jest CmGRP1 zidentyfikowane w soku mlecznym glistnika jaskółcze ziele (Chelidonium majus L.), co wskazuje na potencjalnie duże znaczenie tej grupy białek w obronie roślin. W niniejszym artykule przeglądowym przedstawione są najnowsze informacje dotyczące roślinnych białek RBP i omówione jest ich znaczenie dla obrony roślin przeciw patogenom wirusowym i bakteryjnym.

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

60

Numer

4

Opis fizyczny

p.60-73,fig.,ref.

Twórcy

autor
  • Department of Molecular Virology, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University in Poznan, Umultowska 89, 61-614 Poznan, Poland
autor
  • Medicinal Plant Botany and Cultivation Technology Research Group, Institute of Natural Fibres and Medicinal Plants, Kolejowa 2, 62-064 Plewiska, Poland
autor
  • Department of Molecular Virology, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University in Poznan, Umultowska 89, 61-614 Poznan, Poland

Bibliografia

  • 1. Jones JD, Dangl JL. The plant immune system. Nature 2006; 444(7117):323-9.
  • 2. Nawrot R, Kalinowski A, Gozdzicka-Jozefiak A. Proteomic analysis of Chelidonium majus milky sap using two-dimensional gel electrophoresis and tandem mass spectrometry. Phytochemistry 2007; 68(12):1612-1622.
  • 3. Nawrot R, Tomaszewski Ł, Czerwoniec A, Goździcka-Józefiak A. Identification of a Coding Sequence and Structure Modeling of a Glycine-Rich RNA-Binding Protein (CmGRP1) from Chelidonium majus L. Plant Mol Biol Rep 2013; 31:470-476.
  • 4. Woloshen V, Huang S, Li X. RNA-binding Proteins in Plant Immunity. J Pathogens 2011; 2011:e278697.
  • 5. Huh SU, Paek KH. Plant RNA binding proteins for control of RNA virus infection. Front Physiol 2013; 4:397.
  • 6. Monaghan J, Xu F, Xu S, Zhang, Li X. Two putative RNA-binding proteins function with unequal genetic redundancy in the MOS4-associated complex. Plant Physiol 2010; 154(4):1783–1793.
  • 7. Germain H, Na Q, Cheng Y. T.[MOS11: a new component in the mRNA export pathway. PLoS Genetics 2010; 6(12):e1001250.
  • 8. Deleris A, Gallago-Bartolome J, Bao J, Kasschau K. D, Carrington J. C, Voinnet O. Hierarchical action and inhibition of plant dicer-like proteins in antiviral defense. Science 2006; 313(5783):68-71.
  • 9. Zhang Y, Cheng Y. T, Bi D, Palma K, Li X. MOS2, a protein containing G-patch and KOW motifs, is essential for innate immunity in Arabidopsis thaliana. Curr Biol 2005; 15(21):1936-1942.
  • 10. Glisovic T, Bachorik JL, Yong J, Dreyfuss G. RNA-binding proteins and post-transcriptional gene regulation. FEBS Lett 2008; 582(14):1977-1986.
  • 11. Staiger D. RNA-binding proteins and circadian rhythms in Arabidopsis thaliana. Philos Trans R Soc Lond B Biol Sci 2001; 356(1415):1755-1759.
  • 12. Lorkovic ZJ. Role of plant RNA-binding proteins in development, stress response and genome organization. Trends Plant Sci 2009; 14(4):229-236.
  • 13. Qi Y, Tsuda K, Joe A, Sato M, Nguyen LV, Glazebrook J, Alfano JR, Cohen JD, Katagiri F. A putative RNA-binding protein positively regulates salicylic acid-mediated immunity in Arabidopsis. Mol Plant Microbe Interact 2010; 23(12):1573-1583.
  • 14. Kadan G, Gözler T, Shamma M. Turkiyenine, a new alkaloid from Chelidonium majus. J Nat Prod 1990; 53(2):531-532.
  • 15. Pavão M.L, Pinto R.E. Densitometric assays for the evaluation of water soluble alkaloids from Chelidonium majus L. (Papaveraceae) roots in the Azores, along one year cycle. Arquipélago, Sér Ciências Biol Marinhas 1995; 13: 89-91.
  • 16. Colombo M.L, Bosisio E. Pharmacological activities of Chelidonium majus L. (Papaveraceae). Pharmacol Res 1996; 33(2):127-134.
  • 17. Paris R.R, Moyse H. Précis de matière médicale. Vol. II. Paris. Masson Ed, 1967:207-208.
  • 18. Duke J. Handbook of Medicinal Herbs. CRC Press 1985.
  • 19. Bézanger-Beauquesne L, Pinkas M, Torck M, Trotin F. Plantes médicinales des régions tempérées. 2nd ed. Paris. Ed Maloine, 1990.
  • 20. Benninger J, Schneider H. T, Schuppan D, Kirchner T, Hahn E. G. Acute hepatitis induced by greater celandine (Chelidonium majus). Gastroenterology 1999; 117:1234-1237.
  • 21. Chung, H. S, An H. J, Jeong H. J, Won J. H, Hong S. H, Kim H. M. Water extract isolated from Chelidonium majus enhances nitric oxide and tumour necrosis factor-α production via nuclear factor-κB activation in mouse peritoneal macrophages. J. Pharm. Pharmacol 2004; 56:129-134.
  • 22. Kokoska L, Polesny Z, Rada V, Nepovim A, Vanek T. Screening of some Siberian medicinal plants for antimicrobial activity. J Ethnopharmacol 2002; 82(1):51-53.
  • 23. Hiller K. O, Ghorbani M, Schilcher H. Antispasmodic and relaxant activity of chelidonine, protopine, coptisine, and Chelidonium majus extracts on isolated guinea-pig ileum. Planta Med 1998; 64:758-760.
  • 24. Tomé F, Colombo M. L. Alkaloids from Chelidonium majus: distribution in the plant and factors affecting their accumulation. Phytochemistry 1995; 40:3-39.
  • 25. Pattanayak D, Solanke AU, Kumar PA. Plant RNA Interference Pathways: Diversity in Function, Similarity in Action. Plant Mol Biol Rep 2013; 31(3):493-506.
  • 26. Mandadi K. K, Scholthof KB. Plant immune responses against viruses: how does a virus cause disease? Plant Cell 2013; 25(5):1489-505.
  • 27. Ellendorff U, Fradin EF, De Jonge R, Thomma BPHJ. RNA silencing is required for Arabidopsis defence against Verticillium wilt disease. J Exp Bot 2009; 60(2):591-602.
  • 28. Zhang X, Zhao H, Gao S. Arabidopsis argonaute 2 regulates innate immunity via miRNA393-mediated silencing of a golgi-localized SNARE gene, MEMB12. Mol Cell 2011; 42(3):356-366.
  • 29. Burd CG, Dreyfuss G. Conserved structures and diversity of functions RNA-binding proteins. Science 1994; 265:615-621.
  • 30. Dreyfuss G, Kim V.N, Kataoka N. Messenger-RNA-binding proteins and the messages they carry. Nat Rev Mol Cell Biol 2002; 3:195-205.
  • 31. Lunde BM, Moore C, Varani G. RNA-binding proteins: modular design for efficient function. Nat Rev Mol Cell Biol 2007; 8(6):479-490.
  • 32. Lorkovic ZJ, Barta A. Genome analysis: RNA recognition motif (RRM) and K homology (KH) domain RNA-binding proteins from the flowering plant Arabidopsis thaliana. Nucleic Acids Res 2002; 30(3):623-635.
  • 33. Kim JY, Kim WY, Kwak KJ, Oh SH, Han YS, Kang H. Zinc finger-containing glycine-rich RNA-binding protein in Oryza sativa has an RNA chaperone activity under cold stress conditions. Plant Cell Environ 2010; 33(5):759-768.
  • 34. Owttrim GW. RNA helicases and abiotic stress. Nucleic Acids Res 2006; 34(11):3220–3230.
  • 35. Tam PP, Barrette-Ng I.H, Simon D.M, Tam MW, Ang AL, Muench DG. The Puf family of RNA-binding proteins in plants: phylogeny, structural modeling, activity and subcellular localization]. BMC Plant Biol 2010; 10:44.
  • 36. Song JJ, Liu J, Tolia NH, Schneiderman J, Smith S. K, Martienssen RA, Hannon GJ, Joshua-Tor L. The crystal structure of the Argonaute2 PAZ domain reveals an RNA binding motif in RNAi effector complexes. Nat Struct Biol 2003; 10(12):1026-1032.
  • 37. Alba M, Pages M. Plant proteins containing the RNA-recognition motif. Trends Plant Sci 1998; 3(1):15-21.
  • 38. Maris C, Dominguez C, Allain FH. The RNA recognition motif, a plastic RNA-binding platform to regulate post-transcriptional gene expression. FEBS J 2005; 272(9):2118-2131.
  • 39. Cook K.B, Kazan H, Zuberi K, Morris Q, Hughes T.R. RBPDB: a database of RNA-binding specificities. Nucleic Acids Res 2010.
  • 40. Vermel M, Guermann B, Delage L, Grienenberger J.M, Marechal-Drouard L, Gualberto JM. A family of RRM-type RNA-binding proteins specific to plant mitochondria. Proc Natl Acad Sci USA 2002; 99(9):5866-5871.
  • 41. Staiger D, Korneli C, Lummer M, Navarro L. Emerging role for RNA-based regulation in plant immunity. New Phytol 2013; 197(2):394-404.
  • 42. Mousavi A, Hotta Y. Glycine-rich proteins: a class of novel proteins. Appl Biochem Biotechnol 2005; 120(3):169-174.
  • 43. Sachetto-Martins G, Franco L, de Oliveira D. Plant glycine-rich proteins: a family or just proteins with a common motif. Biochem Biophys Acta 2000; 1492(1):1-14.
  • 44. Park C. J, Park C. B, Hong SS, Lee HS, Lee S. Y, Kim S. C. Characterization and cDNA cloning of two glycine- and histidine-rich antimicrobial peptides from the roots of shepherd’s purse, Capsella bursapastoris. Plant Mol Biol 2000; 44(2):187–197.
  • 45. Nawrot R, Barylski J, Nowicki G, Broniarczyk J, Buchwald W, Gozdzicka-Jozefiak A. Plant Antimicrobial peptides. Folia Microbiol 2014; 59:181-196.
  • 46. Bocca SN, Magioli C, Mangeon A, Junqueira RM, Cardeal V, Margis R, Sachetto-Martins G. Survey of glycine-rich proteins (GRPs) in the Eucalyptus expressed sequence tag database (ForEST). Genet Mol Biol 2005; 28(3):608-624.
  • 47. Nawrot R, Musidlak O. Unpublished results, oral communication.
  • 48. Ambrosone A, Costa A, Leone A, Grillo S. Beyond transcription: RNA binding-proteins as emerging regulators of plant response to environmental constraints. Plant Sci 2012; 182:12-18.
  • 49. Bailey-Serres J, Sorenson R, Juntawong P. Getting the message across: cytoplasmic ribonucleoprotein complexes. Trends Plant Sci 2009; 14(8):443-453.
  • 50. Sato M, Nakahara K, Yoshii M, Ishikawa M, Uyeda I. Selective involvement of members of the eukaryotic initiation factor 4E family in the infection of Arabidopsis thaliana by potyviruses. FEBS Lett 2005; 579(5):1167-1171.
  • 51. Duprat A, Caranta C, Revers F, Menand B, Browning K. S, Robaglia C. The Arabidopsis eukaryotic initiation factor (iso)4E is dispensable for plant growth but required for susceptibility to potyviruses. Plant J 2002; (32)6:927-934.
  • 52. Fedoroff NV. RNA-binding proteins in plants: the tip of an iceberg? Curr Opin Plant Biol 2002; 5(5):452-459.
  • 53. Meister G, Tuschl T. Mechanisms of gene silencing by double-stranded RNA. Nature 2004; 431(7006):343-349.
  • 54. Vaucheret H. Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes Dev 2006; 20(7):759-771.
  • 55. Schauer S.E, Jacobsen SE, Meinke DW, Ray A. Dicer-Like1: blind men and elephants in Arabidopsis development. Trends Plant Sci 2002; 7(11):487–491.
  • 56. Xie Z, Allen E, Wilken A, Carrington JC. DICERLIKE4 functions in trans-acting small interfering RNA biogenesis and vegetative phase change in Arabidopsis thaliana. Proc Natl Acad Sci USA 2005; 102(36):12984–12989.
  • 57. Palma K, Zhao Q, Yu TC. Regulation of plant innate immunity by three proteins in a complex conserved across the plant and animal kingdoms. Genes Dev 2007; 21(12):1484-1493.
  • 58. Monaghan J, Xu F, Gao M. Two Prp19-like U-box proteins in the MOS4-associated complex play redundant roles in plant innate immunity. PLoS Pathog 2009; 5(7):e1000526.
  • 59. Li X, Clarke JD, Zhang Y, Dong X. Activation of an EDS1-mediated R-gene pathway in the snc1 mutant leads to constitutive, NPR1-independent pathogen resistance. Mol Plant Microbe Interact 2001; 14(10):1131-1139.
  • 60. Qi Y, Tsuda K, Joe A, Sato M, Nguyen Le V, Glazebrook J. A putative RNA-binding protein positively regulates salicylic acid-mediated immunity in Arabidopsis. Mol Plant Microbe Interact 2010; 23(12):1573-1583.
  • 61. Lee HJ, Kim JS, Yoo SJ, Kang EY, Han SH, Yang KY. Different roles of glycine-rich RNA-binding protein 7 in plant defense against Pectobacterium carotovorum, Botrytis cinerea, and Tobacco mosaic viruses. Plant Physiol Biochem 2012; 60:46-52.
  • 62. Streitner C, Hennig L, Korneli C, Staiger D. Global transcript profiling of transgenic plants constitutively overexpressing the RNA-binding protein AtGRP7. BMC Plant Biol 2010; 10:221.
  • 63. Park CJ, Kim KJ, Shin R, Park JM, Shin YC, Paek KH. Pathogenesis-related protein 10 isolated from hot pepper functions as a ribonuclease in an antiviral pathway. Plant J 2004; 37(2):186-198.
  • 64. Srivastava S, Fristensky B, Kav NN. Constitutive expression of a PR10 protein enhances the germination of Brassica napus under saline conditions]. Plant Cell Physiol 2004; 45(9):1320-1324.
  • 65. Chen ZY, Brown RL, Damann KE, Cleveland TE. PR10 expression in maize and its effect on host resistance against Aspergillus flavus infection and aflatoxin production. Mol Plant Pathol 2010; 11(1):69-81.
  • 66. Wharton RP, Aggarwal AK. mRNA regulation by Puf domain proteins. Sci STKE 2006; 2006(354):pe37.
  • 67. Miller MA, Olivas WM. Roles of Puf proteins in mRNA degradation and translation. Wiley Interdiscip Rev RNA 2011; 2(4):471-492.
  • 68. Huh SU, Kim MJ, Paek KH. Arabidopsis Pumilio protein APUM5 suppresses Cucumber mosaic virus infection via direct binding of viral RNAs. Proc Natl Acad Sci USA 2013; 110(2):779–784.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-eb8fd174-aac8-4cd2-8609-5d6dd5971c42
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.