PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2020 | 164 | 07 |

Tytuł artykułu

Zapis zmian zachodzących w środowisku przez sosnę zwyczajną oraz sosnę Banksa

Autorzy

Treść / Zawartość

Warianty tytułu

EN
Record of the changes in environment by Scots pine and Jack pine trees

Języki publikacji

PL

Abstrakty

EN
The aim of the study was to investigate how industrial pollutants and change of thermal conditions of winter season in the second half of the 20th century affected the basal area increment (BAI) and the climatic signal in the BAI chronologies of Pinus sylvestris and Pinus banksiana. Samples were collected from 21 trees of both species growing in the Chrzanów Forest District (50°20‵ N, 19°47‵ E) which is located between the Upper Silesian and Krakow Industrial Regions. Two cores were taken from each tree. Tree−ring widths were measured at the cores and the BAI for each year in the period 1930−2016 was calculated. The growth reductions of both pine species in the years 1951−1970, increasing of diversity of growth reactions from year to year and also reduction of strength of climatic signal in the period 1963−1994 may have been caused by industry pollution. The reduction of wood growth, the increase of the diversity of short−term incremental reactions and also the reduction of strength of the climatic signal were greater in Jack pine. This indicates that Scots pine was more resistant to pollution. As an industrial production declined and environmentally friendly technologies were introduced in the 1990s homogeneity of growth reactions and strength of dependence between BAI and climate parameters in both species increased. A significant increase in the strength of the relationship between January temperature and BAI of Scots pine and Jack pine was observed in the early 2000s. This may suggest that the vegetation season starts already in January in the study area.

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

164

Numer

07

Opis fizyczny

s.583-593,rys.,bibliogr.

Twórcy

  • Katedra Ochrony Ekosystemów Leśnych, Uniwersytet Rolniczy w Krakowie, al. 29 Listopada 46, 31-425 Kraków

Bibliografia

  • Bellon S., Tumiłowicz J., Król S. 1977. Obce gatunki drzew w gospodarstwie leśnym. PWRiL, Warszawa.
  • Bijak S., Mądrzak P. 2016. Reakcja przyrostowa drzewostanów bukowych w Nadleśnictwie Cewice na zabiegi hodowlane. Studia i Materiały CEPL 48: 166-172.
  • Bijak S., Sobajtis K. 2018. Wpływ zanieczyszczeń z fabryki płyt wiórowych w Szczecinku na przyrost radialny sosny zwyczajnej. Studia i Materiały CEPL 57: 65-74.
  • Biondi F., Waikul K. 2004. DENDROCLIM2002: AC++ program for statistical calibration of climate signals in tree-ring chronologies. Computers & Geosciences 30: 303-311.
  • Borowski M. 1974. Przyrost drzew i drzewostanów. PWRiL, Warszawa.
  • Briffa K., Jones P. D. 1990. Basic chronology statistics and assessment. W: Cook E. R., Kairiukstis L. A. [red.]. Methods of Dendrochronology: Applications in the Environmental Sciences. Kluwer Academic Publishers, Dordrecht. 137-152.
  • Briffa K. R., Wigley T. M. L., Jones P. D. 1987. Standardization and the preparation of chronologies some contrasting approaches. Towards an objective approach to standardization. W: Kairiukstis L., Bednarz Z., Feliksik E. [red.]. Methods of dendrochronology. Proceedings of the Task Force Meeting on Methodology of Dendrochronology. East/West Approaches. 2-6 June, Krakow, Poland. 69-86.
  • Bugała W. 2000. Drzewa i krzewy. PWRiL, Warszawa.
  • Bytnerowicz A. 1996. Physiological aspects of air pollution stress in forests. Phyton-Horn 36: 15-22.
  • Cedro A., Bosiacka B., Myśliwy M. 2013. Dendrochronological analysis of three pine species used as pioneer species to stabilize the coastal dunes of the southern Baltic Coast. Baltic Forestry 19 (2): 226-235.
  • Chojnacka-Ożga L., Ożga W. 2015. Przestrzenna i czasowa zmienność długości meteorologicznego okresu wegetacyjnego w północno-wschodniej Polsce. W: Lorenc H., Ustrnul Z. [red.]. Klimat a społeczeństwo i gospodarka. PTG, IMiGW PIB, Warszawa. 129-144.
  • Cook E. R. 1987. The decomposition of tree-ring series for environmental studies. Tree-Ring Bulletin 47: 37-59.
  • Copenheaver C. A., Pokorski E. A., Curie J. E., Abrams M. D. 2006. Causation of false ring formation in Pinus banksiana: A comparison of age, canopy class, climate and growth rate. Forest Ecology and Management 236 (2-3): 348-355. DOI: https://doi.org/10.1016/j.foreco.2006.09.020.
  • Danek M. 2007. The influence of industry on Scots Pine stands in the south-eastern part of the Silesia-Krakow Upland (Poland) on the basis of dendrochronological analysis. Water Air Soil Pollution 185: 265-277.
  • Durło G., Wilczyński S., Feliksik E. 2004. Wieloletnia zmienność czasu trwania meteorologicznego okresu wegetacji na Kopciowej w Beskidzie Sądeckim. Acta Agraria et Silvestria Series Silvestris 42: 23-33.
  • Emberson L. 2003. Air pollution impacts on crops and forests: an introduction. W: Emberson L., Ashmore M., Murray F. [red.]. Air Pollution Impacts on Crops and Forests: A Global Assessment. Imperial College Press, London. 3-29.
  • Erteld W., Hengst E. 1966. Waldertragslehre. Radebeul, Neumann Verlag.
  • Feliksik E., Wilczyński S. 2003. Tree-rings as indicators of environmental change. Electronic Journal of Polish Agricultural University, ser. Forestry 6 (2).
  • Hirano T., Morimoto K. 1999. Growth reduction of the Japanese black pine corresponding to an air pollution episode. Environmental Pollution 106: 5-12.
  • Hofgaard A., Tardif J., Bergeron Y. 1999. Dendroclimatic response of Picea mariana and Pinus banksiana along a latitudinal gradient in the eastern Canadian boreal forest. Canadian Journal of Forest Research 29 (9): 1333-1346. DOI: https://doi.org/10.1139/x99-073.
  • Holmes R. L. 1983. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bulletin 43: 69-78.
  • Juknys R., Stravinskiene V., Vencloviene J. 2002. Tree-ring analysis for the assessment of anthropogenic changes and trends. Environmental Monitoring and Assessment 77: 81-97.
  • Krąpiec M., Szychowska-Krąpiec E. 2001. Tree-ring estimation of the effect of industrial pollution on pine (Pinus sylvestris) and fir (Abies alba) in the Ojców National Park (southern Poland). Nature Conservation 58 (1): 33-42.
  • L’Hirondelle S. J., Addison P. A. 1985. Effects of SO2 on leaf conductance, Xylem tension, Fructose and sulphur levels of Jack pine seedlings. Environmental Pollution 39 A: 373-386.
  • Malik I., Danek M., Marchwińska-Wyrwał E., Danek T., Wistuba M., Krąpiec M. 2012. Scots pine (Pinus sylvestris L.) growth suppression and adverse effects on human health due to air pollution in the Upper Silesian Industrial District (USID), southern Poland. Water, Air and Soil Pollution 223: 3345-3364.
  • Malik I., Wistuba M., Danek M., Danek T., Krąpiec M. 2011. Wpływ emisji zanieczyszczeń atmosferycznych przez zakłady chemiczne w Tarnowskich Górach (północna część Wyżyny Śląskiej) na szerokość przyrostów rocznych sosny zwyczajnej (Pinus sylvestris L.). Ochrona Środowiska i Zasobów Naturalnych 47: 9-21.
  • Mamet D. S., Chun K. P., Metsaranta J. M., Barr A. G., Johnstone J. F. 2015. Tree rings provide early warning signals of jack pine mortality across a moisture gradient in the southern boreal forest. Environmental Research Letters 10 (8). DOI: https://doi.org/10.1088/1748-9326/10/8/084021.
  • Nöjd P., Reams G. A. 1996. Growth variation of Scots pine across a pollution gradient on the Kola Peninsula, Russia. Environmental Pollution 93: 313-325.
  • Pederson N., Cook E. R., Jakoby G. C., Peteet D. M., Griffin K. L. 2004. The influence of winter temperatures on the annual radial growth of six northern range margin tree species. Dendrochronologia 22: 7-29.
  • Percy K. E., Ferretti M. 2004. Air pollution and forest health: toward new monitoring concepts. Environmental Pollution 130 (1): 113-126.
  • Savva Y., Denneler B., Beregron Y., Koubaa A., Tremblay F. 2008. Effect of interannual climate variations on radial growth of Jack pine provenances in Petawawa, Ontario. Canadian Journal of Forest Research 38 (3): 619-630. DOI. https://doi.org/10.1139/X07-178.
  • Schweingruber F. H., Albrecht H., Beck M., Hessel J., Joos K., Keller D. 1985. Diagnosis and distribution of conifer decay in the Swiss Rhone Valley, a dendrological study. Eidgenössische Anstalt für das Fortliche Versuchswesen 270: 189-192.
  • Sensuła B., Opała M., Wilczyński S., Pawełczyk S. 2015. Long- and short-term incremental response of Pinus sylvestris L. from industrial area nearby steelworks in Silesian Upland, Poland. Dendrochronologia 36: 1-12. DOI: https://doi.org/10.1016/j.dendro.2015.08.001.
  • Sensuła B., Wilczyński S. 2017. Climatic signals in tree-ring width and stable isotopes composition of Pinus sylvestris L. growing in the industrialized area nearby Kędzierzyn-Koźle. Geochronometria 44: 240-255. DOI: https://doi.org/ 10.1515/geochr-2015-0070.
  • Sensuła B., Wilczyński S., Monin L., Allan M., Pazadur A., Fagel N. 2017. Variations of tree ring width and chemical composition of wood of pine growing in the area nearby chemical factories. Geochronometria 44: 226-239. DOI: https://doi.org/10.1515/Geochr-2015-0064.
  • Sensuła B., Wilczyński S., Piotrowska N. 2016. Zastosowanie metod dendrochronologicznych oraz spektrometrycznych w monitorowaniu drzewostanów sosnowych na obszarach przemysłowych. Sylwan 160 (9): 730-740. DOI: https://doi.org/10.26202/sylwan.2016040.
  • Stravinskiene V., Bartkevicius E., Plausinyte E. 2013. Dendrochronological research of Scots pine (Pinus sylvestris L.) radial growth in vicinity of industrial pollution. Dendrochronologia 31: 179-186.
  • Sutherland E. K., Martin B. 1990. Growth response of Pseudotsuga menziessi to air pollution from copper smelting. Canadian Journal of Forest Research 20 (7): 1020-1030.
  • Szychowska-Krąpiec E., Wiśniewski Z. 1996. Zastosowanie analizy przyrostów rocznych sosny zwyczajnej (Pinus sylvestris) do oceny wpływu zanieczyszczeń przemysłowych na przykładzie zakładów chemicznych „Police” (woj. szczecińskie). Kwartalnik Akademii Górniczo-Hutniczej Geologia 22 (3): 281-299.
  • Tardif J., Conciatori F. 2001. Comparative analysis of the climate response of seven boreal tree species from northwestern Quebec, Canada. Tree-Ring Research 57 (2): 169-181.
  • Warren W. G. 1989. Tree rings and pollution: trend removal or trend estimation? W: Pelz D. R [red.]. Proceeding of the IUFRO Conference on Forest Statistics. Abteilung für Forstliche Biometrie, Uniwersität Freiburg. 304-316.
  • Wigley T. M. L., Briffa K. R., Jones P. D. 1984. On the Average Value of Correlated Time Series, with Applications in Dendroclimatology and Hydrometeorology. Journal of Applied Meteorology and Climatology 23: 201-213.
  • Wilczyński S. 2006. The variation of tree-ring widths of Scots pine (Pinus sylvestris L.) affected by air pollution. European Journal of Forest Research 125 (3): 213-219. DOI: https://doi.org/10.1007/s10342-005-0106-2.
  • Wilczyński S. 2010. Uwarunkowania przyrostu radialnego wybranych gatunków drzew z Wyżyny Kieleckiej w świetle analiz dendrochronologicznych. Zeszyty Naukowe UR w Krakowie 464 (341).
  • Wilczyński S., Feliksik E. 2005. Disturbances in variation of the annual ring width of Norway spruce in the Polish Western Beskid Mountains. Journal of Forest Science 51 (12): 539-547.
  • Wilczyński S., Gołąb J. 2001. Sygnał klimatyczny w słojach drewna buka zwyczajnego (Fagus sylvatica L.) z Beskidu Wyspowego. Sylwan 145 (10): 61-72.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-eb2b6705-6474-4cc6-9c97-e06dbd78baa4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.