PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 34 | 1 |

Tytuł artykułu

Microbiome of the digestive tract and probiotic therapy in cyprinids

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Bacteria play an extremely important role in the digestive processes occurring in the digestive tract of all vertebrates. A disturbance of microbial balance may lead to disorders in digestive processes. Due to the high demand for fish from aquaculture, many studies have focused on the microbiome of the digestive tract in these animals, especially synbiotic Lactobacillus bacteria, which play an extremely important and beneficial role in digestive processes. Research conducted in recent years has shown that many factors influence the microflora in fish, such as the surrounding environment, oxygenation, water temperature, food intake, antibiotics, chromium oxide, linoleic acid, and finally the development stage of the fish. The authors of the publication provide an overview of the current knowledge on the gastrointestinal microflora of Cyprinidae and its effect on their digestive processes. In this context information on the probiotic therapy in Cyprinidae was also presented

Słowa kluczowe

Wydawca

-

Rocznik

Tom

34

Numer

1

Opis fizyczny

p.157-170,ref.

Twórcy

autor
  • Department of Inland Fisheries and Aquaculture,, Institute of Zoology, Poznan University of Life Sciences, iPoznan, Poland
  • Department of Inland Fisheries and Aquaculture,, Institute of Zoology, Poznan University of Life Sciences, iPoznan, Poland
  • Department of Inland Fisheries and Aquaculture,, Institute of Zoology, Poznan University of Life Sciences, iPoznan, Poland

Bibliografia

  • ALARCÓN F.J., MARTÍNEZ T.F., DÍAZ M., MOYANO F.J. 2001. Characterization of digestive carbohydrase activity in the gilthead seabream(Sparus aurata). Hydrobiologia, 445: 199–204.
  • AL-TAMEEMI R., ALDUBAIKUL A., SALMAN N.A. 2010. Comparative study of α-amylase activity in three Cyprinid species of different feeding habits from Southern Iraq. Turk. J. Fish. Aquat. Sci., 10(3): 41–414.
  • ALY S.M., AHMED Y.A.G., GHAREEB A.A.A., MOHAMED M.F. 2008. Studies on Bacillus subtilis and Lactobacillus acidophilus, as potential probiotics, on the immune response and resistance of Tilapia nilotica (Oreochromis niloticus) to challenge infections. Fish Shellfish Immunol., 25(1–2): 1281–136.
  • BAIRAGI A., GHOSH K.S., SEN S.K., RAY A.K. 2002. Enzyme producing bacterial flora isolated from fish digestive tracts. Aquacult. Int., 10(2): 109–121.
  • BALCÁZAR J.L., VENDRELL D., DE BLAS I., RUIZ-ZARZUELA I., MUZQUIZ J.L., GIRONES O. 2008. Characterization of probiotic properties of lactic acid bacteria isolated from intestinal microbi-ota of fish. Aquaculture, 278(1–4): 188–191
  • BOGUT I., MILAKOVIC Z., BUKVIC Z., BRKIC S., ZIMMER R. 1998. Influence of probiotic Streptococcus faecium M74 on growth and content of intestinal microflora in carp Cyprinus carpio. Czech J. Anim. Sci., 43: 231–235.
  • CHAN A.S., HORN M.H., DICKSON K.A., GAWLICKA A. 2004. Digestive enzyme activities in car-nivores and herbivores: comparisons among four closely related prickleback fishes (Teleostei: Stichaeidae) from a California rocky intertidal habitat. J. Fish Biol., 65(3): 848–858.
  • CLEMENTS K.D., ANGERT E.R., MONTGOMERY W.L., CHOAT J.H. 2014. Intestinal microbiota in fishes: What’s known and what’s not. Mol. Ecol., 23(8): 1891–1898.
  • COWEY C.B. 1989. Intermediary metabolism. Fish Nutrition., 2: 259–329.daS k.m.,tRipathi S.d. 1991. Studies on the digestive enzymes of grass carp, Ctenopharyngodon idella (Val.). Aquaculture, 92: 21–32.
  • DHAGE K.P. 1968. Studies of the digestive enzymes in the three species of the major carps of India. J. Biol. Sci., 11: 63–74.
  • FAGBENRO O.A. 1990. Food composition and digestive enzymes in the gut of pond cultured Clarias isheriensis (Sydenham 1980),(Siluriformes: Clariidae). J. Appl. Ichthyol., 6(2): 91–98.
  • FAGBENRO O.A., ADEDIRE C.O., AYOTUNDE E.O.,FAMINU E.O. 2000. Haematological profile, food composition and digestive enzyme assay in the gut of the African bony-tongue fish, Heterotis (Clupisudis) niloticus (Cuvier 1829) (Osteoglossidae). Trop. Zool., 13: 1–9.
  • FAYOL-MESSAOUDI D., BERGER C.N., COCONNIER-POLTER M.H., LIEVIN-LE MOAL V., SERVIN A.l.2005. pH-, Lactic acid-, and non-lactic acid-dependent activities of probiotic Lactobacil-li against Salmonella enterica Serovar Typhimurium. Appl. Environ. Microbiol., 71(10): 6008–6013.
  • FENG X., WU Z.X., ZHU D.M., WANG Y., PANG S.F., YU Y.M., CHEN X.X. 2008. Study on digestive enzyme-producing bacteria from the digestive tract of Ctenopharyngodon idellus and Caras-sius auratus gibelio. Fresh. Fish., 38(3): 51–57.
  • FERNANDEZ I., MOYANO F.J., DIAZ M., MARTÍNEZ T. 2001. Characterization of alpha-amylase ac-tivity in five species of Mediterranean sparid fishes (Sparidae, Teleostei). J. Exp. Mar. Biol. Ecol., 262: 1–12.
  • FULLER R. 1989. A review. Probiotics in man and animals. J. Appl. Bactenol., 66.
  • FURUICHI M., YONE Y. 1982. Availability of carbohydrate in nutrition of carp and red sea bream. Bull. Jpn. Soc. Sci. Fish., 48: 945–948.
  • GANGADHARA B., KESHAVANATH P., RAMESHA T.J., PRIYADARSHINI M. 2004. Digestibility of bamboo-grown periphyton by carps (Catla catla, Labeo rohita, Cirrhinus mrigala, Cyprinus carpio, Ctenopharyngodon idella, and Tor khudree) and hybrid red tilapia (Oreochromis mossambicus x O. niloticus). J. Appl. Aquacult., 15: 151–162.
  • GANGULY S., DORA K.C., SARKAR S.,CHOWDHURY S. 2013. Supplementation of prebiotics in fish feed: a review. Rev. Fish Biol. Fisher., 23(2): 195–199.
  • GANGULY S., PRASAD A. 2012. Microflora in fish digestive tract plays significant role in digestion and metabolism. Rev. Fish Biol. Fisher., 22(1): 11–16.
  • GERMAN D.P., HORN M.H., GAWLICKA A. 2004. Digestive enzyme activities in herbivorous and carnivorous prickleback fishes (Teleostei: Stichaeidae): ontogenetic, dietary, and phylogenetic effects. Physiol. Biochem. Zool., 77(5): 789–804.
  • GERMAN D.P., NAGLE B.C., VILLEDA J.M., RUIZ A.M., THOMSON A.W., CONTRERAS-BALDERAS S., EVANS D.H. 2009. Evolution of herbivory in a carnivorous clade of minnows (Teleostei: Cyprin-idae): effect on gut size and digestive physiology. Physiol. Biochem. Zool., 83: 1–18.
  • GHOSH K., SEN S.K., RAY A.K. 2002. Characterization of bacilli isolated from gut of rohu, Labeo rohita, fingerlings and its significance in digestion. J. Appl. Aquacult., 12: 33–42.
  • GHOSH K., SEN S.K., RAY A.K. 2003. Supplementation of an isolated fish gut bacterium, Bacillus circulans, in formulated diets for rohu, Labeo rohita, fingerlings. Israeli J. Aquacult. Bami-gdeh., 55: 13–21.
  • GHOSH K., ROY M., KAR N., RINGØ E. 2010. Gastrointestinal bacteria in rohu, Labeo rohita (Actinopterygii: Cypriniformes: Cyprinidae): scanning electron microscopy and bacteriological study. Acta Ichthyol. Piscatoria, 40: 129–135.
  • GRAJEK W., SIP A., PRZYBYŁ A., MAZURKIEWICZ J. 2015. Probiotyk dla ryb słodkowodnych, mięczaków i skorupiaków zawierający szczep bakterii Carnobacterium divergens oraz jego me-tabolity. PL399670-A1.
  • GRZEŚKOWIAK Ł., COLLADO M.C., VESTERLUND S., MAZURKIEWICZ J., SALMINEN S. 2011.Adhe-sion abilities of commensal fish bacteria by use of mucus model system. Quantitative analysis.Aquaculture, 318(1): 33–36.
  • GUPTA A., GUPTA P., DHAWAN A. 2014. Dietary supplementation of probiotics affects growth, im-mune response and disease resistance of Cyprinus carpio fry. Fish Shellfish Immunol., 41(2): 113–119.
  • HAN S., LIU Y., ZHOU Z., HE S., CAO Y., SHI P., RINGÖ E. 2010. Analysis of bacterial diversity in the intestine of grass carp (Ctenopharyngodon idella) based on 16S rDNA gene sequences.Aquacult. Res., 42(1): 47–56.
  • HANSON P.G., STANDRIDGE J., JARRETT F., MAKI D.G. 1977. Freshwater wound infection due to Aeromonas hydrophila. JAMA, 238(10): 1053–1054.
  • HARIKRISHNAN R., BALASUNDARAM C., HEO M.S. 2010. Lactobacillus sakei BK19 enriched diet en-hances the immunity status and disease resistance to streptococcosis infection in kelp grouper, Epinephelus bruneus. Fish Shellfish Immunol., 29(6): 1037–1043.
  • HOOPER L.V., MACPHERSON A.J. 2010. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat. Rev. Immunol., 10(3): 159–169.
  • HOFFMANN L., MAZURKIEWICZ J., FLORCZYK K., BURCHARDT H. 2017. Zastosowanie probiotyczne-go dodatku paszowego w chowie karpi. Kom. Ryb., 2(157): 14–21.
  • KAMEI Y., SAKATA T., KAKIMOTO D. 1985. Microflora in the alimentary tract of Tilapia: character-ization and distribution of anaerobic bacteria. J. Gen. Appl. Microbiol., 31: 115–124.
  • KAWAI S. 1972. Studies on digestive enzymes of shes fishes. II. Effect of dietary change on the activ-ities of digestive enzymes in carp intestine. Bul. Jpn. Soc. Sci. Fish., 38: 265–270.
  • KASHIWADA K., TESHIMA S., KANAZAWA A. 1970. Studies on the production of B vitamins by in-testinal bacteria of fish. 5. Evidence of the production of vitamin B12 by microorganisms in the intestinal canal of carp, Cyprinus carpio. Bull. Jap. Soc. Scient. Fish., 36: 421–424.
  • KAZUŃ B. 2018. Czy stosowanie probiotyków może stanowić alternatywę dla kuracji antybiotyko-wej? Przegl. Ryb., 2: 25–26.
  • KOIKE S., KOBAYASHI Y. 2001. Development and use of competitive PCR assays for the rumen cellulolytic bacteria: Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flave-faciens. FEMS Microbiol. Lett., 204(2): 361–366.
  • KUZ’MINA V.V. 1996. Influence of age on digestive enzyme activity in some freshwater teleosts.Aquaculture, 148(1): 25–37.
  • LARA-FLORES M. 2011.The use of probiotic in aquaculture: an overview. Int. Res. J. Microbiol., 2(12): 471–478.
  • LARSEN A.M., ARIAS C.R. 2014. More than mucus: the hidden world of the fish microbiota. Fish-eries., 39(4): 145–192.
  • LESEL R., FROMAGEOT C., LESEL M. 1986. Cellulose digestibility in grass carp, Ctenopharyngodon idellaand in goldfish, Carassius auratus. Aquaculture, 54(1–2): 11–17.
  • LIRSKI A., MYSZKOWSKI L. 2017.Obraz polskiej akwakultury 2016 roku, czyli co wynika z analizy kwestionariuszy R-22. Przegl. Ryb., 6: 14–18.
  • LIU H., GUO X., GOONERATNE R., LAI R., ZENG C., ZHAN F.,WANG W. 2016. The gut microbiome and degradation enzyme activity of wild freshwater fishes influenced by their trophic levels. Sci. Rep., 6: 24340.
  • LI X., YAN Q., XIE S., HU W., YU Y., HU Z. 2013. Gut microbiota contributes to the growth of fast-growing transgenic common carp (Cyprinus carpio L.). PLoS One, 8(5): e64577.
  • MARTÍNEZ CRUZ P., IBÁÑEZ A.L., MONROY HERMOSILLO O.A., RAMÍREZ SAAD H.C. 2012. Use of probiotics in aquaculture. Microbiol., 1–13.
  • MAZURKIEWICZ J., PRZYBYŁ A., SIP A., GRAJEK W. 2007.Effect of Carnobacterium divergens and Enterococcus hirae as probbiotic bacteria in feed for common carp, Cyprinus carpio L. Arch.Pol. Fish., 15(2): 93
  • MAZURKIEWICZ J., PRZYBYŁ A. 2010. Probiotyki i prebiotyki w żywieniu karpi. In: Rozród, pod-chów, profilaktyka ryb rzadkich i chronionych. Ed. Z. Zakęś. Wyd. IRS Olsztyn, pp. 110–121.
  • MONDAL S., ROY T., SEN S.K., RAY A.K. 2008.Distribution of enzyme-producing bacteria in the digestive tracts of some freshwater fish. Acta Ichthyol. Piscat., 1(38): 1–8.
  • NAYAK S.K. 1997. Role of gastrointestinal microbiota in fish. Aquacult. Res., 41(11): 1553–1573.
  • NAYAK S.K. 2010. Probiotics and immunity: a fish perspective. Fish Shellfish Immunol., 29(1): 2–14.
  • PREJS A., BLASZCZYK M. 1997.Relationships between food and cellulase activity in freshwater fishes. J. Fish Biol., 11: 447–452.
  • PRZYBYŁ A., MAZURKIEWICZ J., ROŻEK W. 2006. Zastosowanie probiotyków i prebiotyków w żywie-niu karpi. Aparatura Badawcza i Dydaktyczna, 11(1): 65–70.
  • RAHMAN M. H., KAWAI K., KUSUDA R. 1997. Virulence of starved Aeromonas hydrophila to cypri-nid fish. Fish Pathol., 32(3): 163–168.
  • RAMAKRISHNAN C.M., HANIFFA M.A., MANOHAR M., DHANARAJ M., AROCKIARAJ A.J., ARUN-SINGH S.V. 2008. Effecs of probiotics and spirulina an survival and growth of juvenile com-mon carp (Cyprinus carpio) – Israeli. J. Aquaculture, 60: 128–133.
  • RAY A.K., ROY T., MONDAL S., RINGØ E. 2010. Identification of gut associated amylase, cellulase and protease producing bacteria in three species of Indian major carps. Aquacult. Res., 41(10): 1462–1469.
  • RAY A.K., GHOSH K., RINGØ E. 2012.Enzyme-producing bacteria isolated from fish gut: a review. Aquac. Nutr., 18: 465–492.
  • RINGØ E., BIRKBECK T.H. 1999. Intestinal microora of sh and fry: a review. Aquac. Res., 30(2): 73–93.
  • RINGØ E. 2008. The ability of carnobacteria isolated from fish intestine to inhibit growth of fish pathogenic bacteria: a screening study. Aquac. Res., 39(2): 171–180.
  • SAHA S., ROY R.N, SEN S.K, RAY A.K. 2006. Characterization of cellulase-producing bacteria from the digestive tract of tilapia, Oreochromis mossambica (Peters) and grass carp, Ctenopharyn-godon idella (Valencinnes). Aquac. Res., 37: 380–388.
  • SAVAŞ S., KUBILAY A., BASMAZ N. 2005. Effect of bacterial load in feeds on intestinal micro-flora of seabream (Sparus aurata) larvae and juveniles Israeli. J. Aquacult. Bamigdeh., 57(1): 3–9.
  • SHCHERBINA M.A., TROFIMOVA L.N., KAZLAWLENE O.P. 1976. The activity of protease and the intensity of protein absorption with the introduction of different quantities of fat into the food of the carp Cyprinus carpio. J. Ichthyol., 16: 632–636.
  • SHCHERBINA M.AKAZLAWLENE O.P. 1971. The reaction of the medium and the rate of absorption of nutrients in the intestine of carp. J. Ichthyol., 11: 81–85.
  • SILVA S.D., ANDERSON T.A., SARGENT J.R. 1995. Fish nutrition in aquaculture. Rev. Fish Biol. Fish., 5(4): 472–473.
  • SIVANI G., BHASKAR M., SHARMA G.R.K. 2016. Influence of probiotics on growth performance and digestive enzyme activities among common carps (Cyprinus carpio). Int. J. Environ. Sci. Tech-nol., 5(2): 564–574.
  • SUGITA H., MIYAJIMA C., DEGUCHI Y. 1991.The vitamin B12-producing ability of the intestinal microflora of freshwater fish. Aquaculture, 92: 267–276.
  • SUGITA H., KAWASAKI J., DEGUCHI Y. 1997.Production of amylase by the intestinal microflora in cultured freshwater fish. Lett. Appl. Microbiol., 24(2): 105–108.
  • SYVOKIENI J. 1989. Symbiotic digestion in hydrobionts and insects. Mokslas, Vilnius. takeuchi t. 1991. Digestion and nutrition of fish. In: Fish Physiology. Ed. M.Y. Itazawa, I. Hanyu, 1: 67–101.
  • TAMBOLI C.P., NEUT C., DESREUMAUX P., COLOMBEL J.F. 2004. Dysbiosis in inflammatory bowel disease. Gut., 53(1): 1–4.
  • TENGJAROENKUL B., SMITH B.J., CACECI T., SMITH S.A. 2000. Distribution of intestinal enzyme activities along the intestinal tract of cultured Nile tilapia, Oreochromis niloticus L. Aquacul-ture, 182: 317–327
  • TOVAR-RAMÍREZ D., INFANTE J.Z., CA C., GATESOUPE F.J., VÁZQUEZ-JUÁREZ R. 2004.Influence of dietary live yeast on European sea bass (Dicentrarchus labrax) larval development. Aquacul-ture, 234: 415–427.
  • TRUST T.J., SPARROW R.A.H. 1974.The bacterial flora in the alimentary tract of freshwater salmo-nid fishes. Can. J. Microbiol., 20: 1219–1228.
  • VERSCHUERE L., ROMBAUT G., SORGELOOS P., VERSTRAETE W. 2000. Probiotic bacteria as biological control agents in aquaculture. Microbiol. Mol. Biol. Rev., 64: 655–671.
  • VIJAYABASKAR P., SOMASUNDARAM S.T. 2008. Isolation of bacteriocin producing lactic acid bacte-ria from fish gut and probiotic activity against common fresh water fish pathogen Aeromonas hydrophila. Biotechnol. J., 7(1): 124–128.
  • WANG Y.B, LI J.R, LIN J. 2008. Probiotics in aquaculture: challenges and outlook. Aquaculture, 28: 1–4.
  • WANG Y. 2011. Use of probiotics Bacillus coagulans, Rhodopseudomonas palustris and Lacto-bacillus acidhilus as growth promoters in grass carp (Ctenopharyngodon idella) fingerlings. Aquacult. Nutr., 17(2): e372–e378.
  • WU S., WANG G., ANGERT E.R., WANG W., LI W., ZOU H. 2012. Composition, diversity, and origin of the bacterial community in grass carp intestine. PloS one., 7(2): e30440.
  • WU S.G., TIAN J.Y., GATESOUPE F.J., LI W.X., ZOU H., YANG B.J., WANG G.T. 2013.Intestinal microbiota of gibel carp (Carassius auratus gibelio) and its origin as revealed by 454 pyrose-quencing. World J. Microbiol. Biotechnol., 29(9): 1585–1595.
  • YANBO W., ZIRONG X. 2006. Effect of probiotics for common carp (Cyprinus carpio) based on growth performance and digestive enzyme activities. Anim. Feed Sci. Technol., 127(3–4); 283–292

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-eb24d4a1-d6c9-4765-a7ff-de678b363688
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.