PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 53 | 4 |

Tytuł artykułu

Herbivore-induced plant volatiles and their potential role in integrated pest management

Warianty tytułu

PL
Lotne związki emitowane z roślin zasiedlonych przez fitofagi i ich znaczenie w integrowanej ochronie

Języki publikacji

PL

Abstrakty

PL
Wabienie wrogów naturalnych do roślin uszkodzonych przez szkodniki jest procesem skomplikowanym i nie do końca poznanym. Na jego efektywność wpływa wiele czynników. Profil Herbivore‐Induced Plant Volatiles (HIPVs) zależy zarówno od gatunku/ odmiany rośliny i jej stadium rozwojowego, jak i gatunku szkodnika, jego stadium rozwojowego i nasilenia występowania. Wyniki ostatnich badań wskazują, że emisja HIPVs ulega znacznym zmianom pod wpływem czynników środowiskowych (susza, zasolenie, ekstremalne temperatury, natężenie światła i innych). Wykazano również, że obecność organizmów endosymbiontycznych może zmieniać profil związków lotnych emitowanych z roślin zasiedlonych przez szkodniki, co skutkuje modyfikacją zachowania wrogów naturalnych. Szczegółowe poznanie mechanizmów obrony pośredniej powinno w przyszłości przyczynić się do umożliwienia wykorzystania związków lotnych w praktyce, jako metody kompatybilnej z innymi metodami stosowanymi w integrowanej ochronie roślin.
EN
Luring natural enemies to the plants colonized by pests is a complex process, which is still not fully recognized, and the efficiency of which is influenced by many factors. A profile of Herbivore‐Induced Plant Volatiles (HIPVs) depends on species/cultivars of the hostplant and its developmental stage, as well as species of the pest, its developmental stage and density. The results of recent studies show that emission of HIPVs significantly varies with abiotic environmental factors (soil drought, salinity, temperatures, light intensity, etc.). Furthermore, it was shown that the presence of endosymbiotic organisms may change the composition of volatile compounds emitted from the plants colonized by pests, resulting in modification of the behaviour of natural enemies. Detailed knowledge concerning mechanisms of indirect defense should contribute to employment of volatile compounds in agricultural practice as a method compatible with other methods used in integrated plant protection.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

53

Numer

4

Opis fizyczny

s.661-667,bibliogr.

Twórcy

Bibliografia

  • Abgobga B.C., Powell W. 2007. Effect of the presence of a nonhost herbivore on the response of the aphid parasitoid Diaeretiella rapae to host-infested cabbage plants. J. Chem. Ecol. 33: 2229−2235.
  • Agrawal A.A., Janssen A., Bruin J., Posthumus M.A., Sabelis M.W. 2002. An ecological cost of plant defence: attractiveness of bitter cucumber plants to natural enemies of herbivores. Ecol. Lett. 5: 377−385.
  • Alborn H.T., Turlings T.C.J., Jones T.H., Stenhagen G., Loughrin J.H., Tumlinson J.H. 1997. An elicitor of plant volatiles from beet armyworm oral secretion. Science 276: 945−949.
  • Baldwin I.T. 2010. Plant volatiles. Curr. Biol. 20: R392−R397.
  • Baldwin J.A., Bowring S.A., Williams M.L., Mahan K.H. 2006. Geochronological constraints on the evolution of high-pressure felsic granulites from an integrated electron microprobe and geochemical study. Lithos 88: 173−200.
  • Barker G.M., Addison P.J. 1996. Influence of clavicipitaceous endophyte infection in ryegrass on development of the parasitoid Microctonus hyperodae loaen (Hymenoptera: Braconidae) in Listronotus bonariensis (Kuschel) (Coleoptera: Curculionidae). Biol. Control 7: 281–287.
  • Birkett M.A., Campbell C.A.M., Chamberlain K., Guerrieri E., Hick A., Martin J.L., Matthes M. 2000. New roles for cis-jasmone as an insect semiochemical and in plant defense. Proc. Natl. Acad. Sci. USA 97 (16): 9329−9334.
  • Bruinsma M., Dicke M. 2008. Herbivore-induced indirect defense: from induction mechanisms to community ecology. p. 31−60. In: “Induced Plant Resistance to Herbivory” (A. Schaller, ed). Springer Science + Busines Media B.V., 462 pp.
  • Clay K. 1988. Fungal endophytes of grasses: a defensive mutualism between plants and fungi. Ecology 69: 10−16.
  • Copolovici L.O., Filella I., Llusià J., Niinemets Ü., Peñuelas J. 2005. The capacity for thermal protection of photosynthetic electron transport varies for differentmonoterpenes in Quercus ilex. Plant Physiol. 139: 485–496.
  • De Boer J.G., Hordijk C.A., Posthumus M.A., Dicke M. 2008. Prey and non-prey arthropods sharing a host plant: effects on induced volatile emission and predator attraction. J. Chem. Ecol. 34: 281–290.
  • De Moraes C.M., Lewis W.J., Pare P.W., Alborn H.T., Tumlinson J.H. 1998. Herbivore-infested plants selectively attract parasitoids. Nature 393: 570–573.
  • De Vos M., Van Zaanen W., Koornneef A., Korzelius J.P., Dicke M., Van Loon L.C., Pieterse C.M.J. 2006. Herbivore-induced resistance against microbial pathogens in Arabidopsis. Plant Physiol. 142: 352–363.
  • Dicke M., Baldwin I.T. 2010. The evolutionary context for herbivore-induced plant volatiles: beyond the “cry-for-help”. Trends Plant Sci. 15: 167–175.
  • Dicke M., Gols R., Ludeking D., Posthumus M.A. 1999. Jasmonic acid and herbivory differentially induce carnivore-attracting plant volatiles in lima bean plants. J. Chem. Ecol. 25: 1907–1922.
  • Dicke M., Sabelis M.W., Takabayashi J., Bruin J., Posthumus M.A. 1990. Plant strategies of manipulating predator-prey interaction trough allelochemicals: prospects for application in pest control. J. Chem. Ecol. 16: 3091–3118.
  • Du Y., Poppy G.M., Powell W., Pickett J.A., Wadhams L.J., Woodcock C.M. 1998. Identification of semiochemicals released during aphid feeding that attract parasitoid Aphidius ervi. J. Chem. Ecol. 24: 1355–1368.
  • Dyrektywa Parlamentu Europejskiego i Rady 2009/128/WE z dnia 21 października 2009.
  • Engelberth J., Alborn H.T., Schmelz E.A., Tumlinson J.H. 2004. Airborne signals prime plants against insect herbivore attack. Proc. Natl. Acad. Sci. USA 101 (6): 1781–1785.
  • Felton G.W., Tumlinson J.H. 2008. Plant-insect dialogs: complex interactions at the plant-insect interface. Curr. Opinion Plant Biol. 11: 457–463.
  • Geervlier J.B.F., Posthumus S.A., Lem V., Guyot-Leclerc M., Dicke M. 1997. Comparative analysis of headspace volatiles from different caterfillar-infested or uninfested food plants of Pieris species. J. Chem. Ecol. 23: 2935–2954.
  • Girling R.D., Steweard-Jones A., Dherbecourt J., Staley J.T., Wright D.J., Poppy G.M. 2011. Parasitoids select plants more heavily infested with their caterpillar hosts: a new approach to aid interpretation of plant headspace volatiles. Proc. Roy. Soc. B: Biol. Sci. 278: 2646–2653.
  • Glinwood R., Ninkovic V., Pettersson J. 2011. Chemical interaction between undamaged plants – effects on herbivores and natural enemies. Phytochemistry 72: 1683–1689.
  • Gols R., Posthumus M.A., Dicke M. 1999. Jasmonic acid induces the production of gerbera volatiles that attract the biological control agent Phytoseiulus persimilis. Entomol. Exp. Appl. 93: 77–86.
  • Hare J.D., Sun J.J. 2011. Production of induced volatiles by Datura wrightii in response to damage by insects: effect of herbivore species and time. J. Chem. Ecol. 37: 751–764.
  • Heil M. 2008. Indirect defence via tritrophic interactions. New Phytol. 178: 41–61.
  • Heil M., Kost C. 2006. Priming of indirect defenses. Ecol. Lett. 9: 813–817.
  • Himanen S.J., Nerg A.M., Nissinen A., Pinto D.M., Stewart C.N. Jr, Poppy G.M., Holopainen J.K. 2009. Effects of elevated carbon dioxide and ozone on volatile terpenoid emissions and multitrophic communication of transgenic insecticidal oilseed rape (Brassica napus). New Phytol. 181: 174–186.
  • Holopainen J.K., Gershenzon J. 2010. Multiple stress factors and the emission of plant VOCs. Trend Plant Sci. 15: 176–184.
  • Howe G.A., Jander G. 2008. Plant immunity to insect herbivores. Annu. Rev. Plant Biol. 59: 41–66.
  • Kahl J., Siemens D.H., Aerts R.J., Gäbler R., Kühnemann F., Preston C.A., Baldwin I.T. 2000. Herbivore-induced ethylene suppresses a direct defense but not a putative indirect defense against an adapted herbivore. Planta 210: 336–342.
  • Kant M.R., Ament K., Sabelis M.W., Haring M.A., Schuurink R.C. 2004. Differential timing of spider mite-induced direct and indirect defenses in tomato plants. Plant Physiol. 135: 483–495.
  • Kessler A., Halitschke R., Diezel C., Baldwin I.T. 2006. Priming of plant defense responses in nature by airborne signaling between Artemisia tridentata and Nicotiana attenuata. Oecologia 148: 280–292.
  • Koch T., Krumm T., Jung V., Engelberth J., Boland W. 1999. Differential induction of plant volatile biosynthesis in the lima bean by early and late intermediates of the octadecanoid signaling pathway. Plant Physiol. 121: 153–162.
  • Kost C., Heil M. 2006. Herbivore-induced plant volatiles induce an indirect defence in neighbouring plants. J. Ecol. 94: 619–628.
  • Kugimiya S., Shimoda T., Tabata J., Takabayashi J. 2010. Present or past herbivory: a screening of volatiles released from Brassica rapa under caterpillar attacks as attractants for the solitary parasitoid Cotesia vestalis. J. Chem. Ecol. 36: 620–628.
  • Kundel B.A. 2003. Plant Fungal Endosymbionts alter Host-Parasite Relationships between Generalist Herbivores (Lepidoptera: Noctuidae) and an Entomopathogenic Nematode. The Ohio State University: 12–54.
  • Maeda T., Takabayashi J., Yano S., Takafuji A. 2000. Effects of light on the tritrophic interaction between kidney bean plants, twospotted spider mites and predatory mites, Amblyseius womersleyi (Acari:Phytoseiidae). Exp. Appl. Acar. 24: 415–425.
  • Maffei M.E., Mithofer A., Boland W. 2007. Insects feeding on plants: Rapid signals and responses preceding the induction of phytochemical release. Phytochemistry 68: 2946–2959.
  • Mattiacci L., Dicke M., Posthumus M.A. 1994. Induction of parasitoid attracting synomone in Brussels sprouts plants by feeding of P. brassicae larvae: Role of mechanical damage and herbivore elicitor. J. Chem. Ecol. 20: 2229–2247.
  • Mattiacci L., Dicke M., Posthumus M.A. 1995. Beta-glucosidase: an elicitor of herbivore-induced plant odor that attracts host-searching parasitic wasps. Proc. Natl. Acad. Sci. USA 92: 2036–2040.
  • Omacini M., Chaneton E.J., Ghersa C.M., Müller C.B. 2001. Symbiontic fungal endophytes control insect host-parasite interaction webs. Nature 409: 78–81.
  • Ozawa R., Shiojiri K., Sabelis M.W., Arimura G., Nishioka T., Takabayashi J. 2004. Corn plants treated with jasmonic acid attract more specialist parasitoids, thereby increasing parasitization of the common armyworm. J. Chem. Ecol. 30: 1797–1808.
  • Peñaflor M.F.G.V., Erb M., Miranda L.A., Werneburg A.G., Bento J.M.S. 2011. Herbivore-induced plant volatiles as cues for generalist and specialist egg parazitoids. J. Chem. Ecol. 37: 1304–1313.
  • Powell W., Pannacchio F., Poppy G.M., Tremblay E. 1998. Strategies involved in the location of hosts by the parasitoid Aphidius ervi Haliday (Hymenoptera: Braconidae: Aphidiinae). Biol. Control 11: 104–112.
  • Price P.W., Bouton C.E., Gross P., McPheron B.A., Thompson J.N., Weiss A.E. 1980. Interaction among three trophic levels: influence of plants on interactions between insect herbivores and natural enemies. Annu. Rev. Ecol. Syst. 11: 41–65.
  • Puente M., Magori K., Kennedy G., Gould F. 2008. Impact of herbivore-induced plant volatiles on parasitoid foraging success: a spatial simulation of the Cotesia rubecula, Pieris rapae and Brassica oleracea system. J. Chem. Ecol. 34: 859–870.
  • Rasmann S., Köllner T.G., Degenhardt J., Hiltpold I., Toepfer S., Kuhlmann U., Gershenzon J., Turlings T.C.J. 2005. Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434: 732–737.
  • Sassi C., Müller Ch.B., Krauss J. 2006. Fungal plant endosymbionts alter life history and reproductive success of aphid predators. Proc. Royal Soc., Series B: Biol. Sci. 273: 1301–1306.
  • Schausberger P., Peneder S., Jürschik S., Hoffmann D. 2012. Mycorrhiza changes plant volatiles to attract spider mite enemies. Functional Ecol. 26: 441–449.
  • Schmelz E.A., Alborn H.T., Tumlinson J.H. 2001. The influence of intact-plant and excised-leaf bioassay designs on voliticitin- and jasmonic acid-induced sesquiterpene volatile release in Zea mays. Planta 214: 171–179.
  • Schuman M.C., Barthel K., Baldwin I.T. 2012. Herbivory-induced volatiles function as defenses increasing fitness of the native plant Nicotiana attenuata in nature. http://elife.elifesciences.org/content/1/e00007/abstract-1, accessed: 15.10.2012.
  • Takabayashi J., Dicke M., Posthumus M.A. 1994. Volatile herbivore-induced terpenoids in plant-mite interactions: variation caused by biotic and abiotic factors. J. Chem. Ecol. 20: 1329–1354.
  • Thaler J.S. 1999. Jasmonate-inducible plant defences cause increased parasitism of herbivores. Nature 399: 686–688.
  • Turlings T.C.J., Ton J. 2006. Exploiting scents of distress: the prospect of manipulating herbivore-induced plant odours to enhance the control of agricultural pests. Curr. Opin. Plant Biol. 9: 421–427.
  • Turlings T.C.J., Tumlinson J.H. 1992. Systemic release of chemical signals by hervbivore-injured corn. Proc. Natl. Acad. Sci. USA 89: 8399–8402.
  • Turlings T.C.J., Tumlinson J.H., Lewis W.J. 1990. Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science 250: 1251–1253.
  • Vet L.E.M., Dicke M. 1992. Ecology of infochemical use by natural enemies in a tritrophic context. Annu. Rev. Entomol. 37: 141–172.
  • Vickers C.E., Possell M., Cojocariu C.I., Velikova V.B., Laothawornkitkul J., Ryan A., Mullineaux P.M., Hewitt N.C. 2009. Isoprene synthesis protects transgenic tobacco plants from oxidative stress. Plant Cell Environ. 32: 520–531.
  • Vuorinen T., Nerg A.M., Holopainen J.K. 2004. Ozone exposure triggers the emission of herbivore-induced plant volatiles, but does not disturb tritrophic signalling. Environ. Pollut. 131: 305–311.
  • Walling L.L. 2000. The myriad plant responses to herbivores. J. Plant Growth Regul. 19: 195–216.

Uwagi

PL
Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-eb246df7-d8a2-45f3-9a01-ed9213b96c37
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.