PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 18 | 2 |

Tytuł artykułu

Analysis of degradation processes in reservoirs based on remote sensing data

Autorzy

Warianty tytułu

PL
Analiza procesów degradacji zachodzących w zbiornikach retencyjnych na podstawie danych satelitarnych

Języki publikacji

EN

Abstrakty

EN
Aim of the study The primary objective was to assess spatio-temporal changes of the vegetation occurring in 12 reservoirs located in the Odra River basin. The analysis was made for reservoirs of different constructions, i.e. single stage, two-stage and lateral. The second purpose was to analyze possibility using remote sensing data to monitor the dynamics of the vegetation processes. Material and methods Monitoring and mapping of spatio-temporal changes of the vegetation occurring in the reservoirs was analyzed on the basis on Sentinel-2 data. The analysis was based on the NDVI and the WAVI indices. To specify spatial changes of vegetation, the reservoirs were split into zones equals to 250 m. The statistical analysis was aimed at comparing the NDVI and the WAVI values between designated zones. In turn, Cluster analysis (CA) was used to group reservoirs into clusters on the basis of similarities between the NDVI and the WAVI values. Results and conclusions Cluster analysis (CA) showed that each reservoir is separate water body where decisive impact on degradation process could have different factor. There was observed that two-stage construction focuses degradation processes in pre-reservoir and protect water resources in the main part. Additionally, relatively new solution – lateral reservoirs seems to be alternative preventing degradation processes. Taking into account possibility of using satellite imagery, there was observed that resolutions of Sentinel-2 satellite imagery allow to monitor vegetation processes in terms of time and space. The major limitation of using remote sensing data is high cloud density, which significantly reduces the number of observations during most of the year.
PL
Cel pracy Podstawowym celem pracy była ocena zmian czasowo-przestrzennych wegetacji występujących w 12 zbiornikach retencyjnych zlokalizowanych w dorzeczu Odry. Analizę przeprowadzono dla zbiorników o różnych konstrukcjach – jednostopniowych, zbiorników z wydzieloną częścią wstępną oraz lateralnych. Drugim celem pracy była analiza możliwości wykorzystania danych satelitarnych do monitorowania dynamiki procesów wegetacyjnych. Materiał i metody Monitorowanie i mapowanie zmian czasowo-przestrzennych wegetacji zachodzących w zbiornikach analizowano na podstawie danych z satelity Sentinel-2. Analiza procesów degradacji przeprowadzona została przy wykorzystaniu indeksów NDVI i WAVI. W celu określenia zmian przestrzennych, zbiorniki podzielono na strefy równe 250 m. Analiza skupień (CA) została wykorzystana do grupowania zbiorników w klastry na podstawie podobieństw pomiędzy wartościami indeksów spektralnych. Wyniki i wnioski Analiza skupień (CA) wykazała, że każdy ze zbiorników funkcjonuje jako indywidualny obiekt, w którym decydujący wpływ na procesy degradacji może mieć inny czynnik. Zaobserwowano, że dwustopniowa konstrukcja zbiorników wpływa korzystnie na ograniczenie dopływu zanieczyszczeń do części głównej, skupiając procesy degradacji w zbiorniku wstępnym. Ponadto wykazano, że funkcjonowanie zbiorników lateralnych może pozytywnie wpływać na ograniczenie procesów degradacji w obrębie zbiornika. Analiza możliwości wykorzystania zdjęć satelitarnych wykazała, że satelity Sentinel-2 stanowią obiecujące źródło danych umożliwiające detekcję procesów degradacji w ujęciu czasowym i przestrzennym. Głównym ograniczeniem wykorzystania zobrazowań satelitarnych jest pokrycie chmur, które znacznie zmniejsza liczbę obserwacji w ciągu roku.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

18

Numer

2

Opis fizyczny

s.23-37,fig.,ref.

Twórcy

autor
  • Faculty of Environmental Engineering and Spatial Management, Poznan University of Life Sciences, Piatkowska 94, 60-649 Poznan, Poland
autor
  • Faculty of Environmental Engineering and Spatial Management, Poznan University of Life Sciences, Piatkowska 94, 60-649 Poznan, Poland

Bibliografia

  • Alvarez-Mendoza, C. I., Teodoro, A., Ramirez-Cando, L. (2019). Improving NDVI by removing cirrus clouds with optical remote sensing data from Landsat-8–a case study in Quito, Ecuador. Remote Sensing Applications: Society and Environment, 13, 257–274.
  • Beck, R., Xu, M., Zhan, S., Liu, H., Johansen, R., Tong, S., ... & Berling, K. (2017). Comparison of satellite reflectance algorithms for estimating phycocyanin values and cyanobacterial total biovolume in a temperate reservoir using coincident hyperspectral aircraft imagery and dense coincident surface observations. Remote Sensing, 9 (6), 538.
  • Bogdał, A., Policht-Latawiec, A., Koldras, S. (2015). Changes of Water Quality Indices with Depth at Drinking Water Intake from Dobczyce Reservoir. Annual Set The Environment Protection, 17, 1239–1258.
  • Dąbrowska, J., Lejcuś, K., Kuśnierz, M., Czamara, A., Kamińska, J., Lejcuś, I. (2016). Phosphate dynamics in the drinking water catchment area of the Dobromierz Reservoir. Desalination and Water Treatment, 57 (53), 25600–25609.
  • Dąbrowska, J., Pawęska, K., Dąbek, P. B., Stodolak, R. (2017). The implications of economic development, climate change and European water policy on surface water quality threats. Acta Scientiarum Polonorum. Formatio Circumiectus, 16(3), 111.
  • Dörnhöfer, K., Klinger, P., Heege, T., Oppelt, N. (2018). Multi-sensor satellite and in situ monitoring of phytoplankton development in a eutrophic-mesotrophic lake. Science of The Total Environment, 612, 1200–1214.
  • Fuska, J., Kubinský, D., Weis, K., Lackóová, L., Pokrývková, J., Leitmanová, M., Panagopoulos, T. (2017). Area-Storage Capacity Curve of Historic Artificial Water Reservoir Ottergrund, Slovakia–Assessment of the Historical Data With the use of GIS Tools. Journal of Ecological Engineering, 18(1).
  • Francés, G.E., Quevauviller, P., González, E.S.M., Amelin E.V. (2017). Climate change policy and water resources in the EU and Spain. A closer look into the Water Framework Directive. Environmental Science & Policy, 69, 1–12.
  • Gao, Q., Li, Y., Cheng, Q., Yu, M., Hu, B., Wang, Z., Yu, Z. (2016). Analysis and assessment of the nutrients, biochemical indexes and heavy metals in the Three Gorges Reservoir, China, from 2008 to 2013. Water research, 92, 262–274.
  • González-Márquez, L.C., Torres-Bejarano, F.M., Torregroza-Espinosa, A.C., Hansen-Rodríguez, I.R., Rodríguez-Gallegos, H.B. (2018). Use of LANDSAT 8 images for depth and water quality assessment of El Guájaro reservoir, Colombia. Journal of South American Earth Sciences, 82, 231–238.
  • Hestir, E.L., Brando, V.E., Bresciani, M., Giardino, C., Matta, E., Villa, P., Dekker, A.G. (2015). Measuring freshwater aquatic ecosystems: The need for a hyperspectral global mapping satellite mission. Remote Sensing of Environment, 167, 181–195.
  • Huang, S., Huang, Q., Chang, J., Zhu, Y., Leng, G. and Xing, L. (2015). Drought structure based on a nonparametric multivariate standardized drought index across the Yellow River basin, China. Journal of Hydrology, 530, 127–136.
  • Jaskuła, J., Sojka, M. (2019). Assessment of spectral indices for detection of vegetative overgrowth of reservoirs. Polish Journal of Environmental Studies, 28 (6), [in print).
  • Jaskuła, J., Sojka, M., Wicher-Dysarz, J. (2018). Analysis of the vegetation process in a two-stage reservoir on the basis of satellite imagery – a case study: Radzyny Reservoir on the Sama River. Annual Set The Environment Protection, 20, 203–220.
  • Khorrami, Z., Banihashemi, M.A. (2019). Numerical simulation of sedimentation process in reservoirs and development of a non-coupled algorithm to improve long-term modeling. International Journal of Sediment Research, 34 (3), 279–294.
  • Klein, I., Gessner, U., Dietz, A.J., & Kuenzer, C. (2017). Global WaterPack–A 250 m resolution dataset revealing the daily dynamics of global inland water bodies. Remote Sensing of Environment, 198, 345-362.
  • Liu, C., Wu, X., Wang, L. (2019). Analysis on land ecological security change and affect factors using RS and GWR in the Danjiangkou Reservoir area, China. Applied Geography, 105, 1–14.
  • Martins, V. S., Kaleita, A., Barbosa, C. C., Fassoni-Andrade, A. C., de Lucia Lobo, F., Novo, E. M. (2019). Remote sensing of large reservoir in the drought years: Implications on surface water change and turbidity variability of Sobradinho reservoir (Northeast Brazil). Remote Sensing Applications: Society and Environment, 13, 275–288.
  • Noori, R., Berndtsson, R., Adamowski, J.F., Abyaneh, M.R. (2018). Temporal and depth variation of water quality due to thermal stratification in Karkheh Reservoir, Iran. Journal of Hydrology: Regional Studies, 19, 279–286.
  • Pekel, J. F., Cottam, A., Gorelick, N., Belward, A. S. (2016). High-resolution mapping of global surface water and its long-term changes. Nature, 540 (7633), 418.
  • Przybyła, C., Kozdrój, P., Sojka, M. (2015). Application of Multivariate Statistical Methods in Water Quality Assessment of River-reservoirs Systems (on the Example of Jutrosin and Pakosław Reservoirs, Orla Basin). Annual Set The Environment Protection, 17 (2), 1125–1141.
  • Silva, T., Giani, A., Figueredo, C., Viana, P., Khac, V.T., Lemaire, B. J., ..., Vinçon-Leite, B. (2016). Comparison of cyanobacteria monitoring methods in a tropical reservoir by in vivo and in situ spectrofluorometry. Ecological Engineering, 97, 79–87.
  • Sojka, M., Jaskuła, J., Wicher-Dysarz, J., Dysarz, T. (2017). Analysis of selected reservoirs functioning in the Wielkopolska region. Acta Scientiarum Polonorum. Formatio Circumiectus, 16(4), 205.
  • Sojka, M., Jaskuła, J., Wróżynski, R., Waligórski, B. (2019). Application of Sentinel-2 satellite imagery to assessment of spatio-temporal changes in the reservoir overgrowth process—A case study: Przebedowo, West Poland. Carpathian J. Earth Environ. Sci., 14, 39–50.
  • Sojka, M., Siepak, M., Jaskuła, J., & Wicher-Dysarz, J. (2018). Heavy Metal Transport in a River-Reservoir System: a Case Study from Central Poland. Polish Journal of Environmental Studies, 27 (4).
  • Song, C., Huang, B., Ke, L., Richards, K. S. 2014. Remote sensing of alpine lake water environment changes on the Tibetan Plateau and surroundings: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 92, 26–37.
  • Souza, M.D.C.D., Crossetti, L.O., Becker, V. (2018). Effects of temperature increase and nutrient enrichment on phytoplankton functional groups in a Brazilian semi-arid reservoir. Acta Limnologica Brasiliensia, 30.
  • Tadesse, A., Dai, W. (2019). Prediction of sedimentation in reservoirs by combining catchment based model and stream based model with limited data. International journal of sediment research, 34(1), 27–37.
  • Tang, X., Li, R., Wu, M., Zhao, W., Zhao, L., Zhou, Y., Bowes, M. J. (2019). Influence of turbid flood water release on sediment deposition and phosphorus distribution in the bed sediment of the Three Gorges Reservoir, China. Science of the Total Environment, 657, 36–45.
  • Wang, K., Shi, H., Chen, J., Li, T. (2019). An improved operation-based reservoir scheme integrated with Variable Infiltration Capacity model for multiyear and multipurpose reservoirs. Journal of Hydrology, 571, 365–375.
  • Wen, Z., Wu, S., Chen, J., Lü, M. (2017). NDVI indicated long-term interannual changes in vegetation activities and their responses to climatic and anthropogenic factors in the Three Gorges Reservoir Region, China. Science of The Total Environment, 574, 947–959.
  • Wicher-Dysarz, J. (2019). Analysis of Shear Stress and Stream Power Spatial Distributions for Detection of Operational Problems in the Stare Miasto Reservoir. Water, 11(4), 691.
  • Xiao, Y., Zhang, J., Cui, T., Gong, J., Liu, R., Chen, X., Liang, X. (2019). Remote sensing estimation of the biomass of floating Ulva prolifera and analysis of the main factors driving the interannual variability of the biomass in the Yellow Sea. Marine pollution bulletin, 140, 330–340.
  • Villa, P., Mousivand, A., Bresciani, M. (2014). Aquatic vegetation indices assessment through radiative transfer modeling and linear mixture simulation. International Journal of Applied Earth Observation and Geoinformation, 30, 113–127.
  • Yadav, S., Yoneda, M., Susaki, J., Tamura, M., Ishikawa, K., Yamashiki, Y. (2017). A satellite-based assessment of the distribution and biomass of submerged aquatic vegetation in the optically shallow basin of Lake Biwa. Remote Sensing, 9 (9), 966.
  • Yu, M.L., Hong, G. X., Xu, H., Zhu, G. W., Zhu, M.Y., Quan, Q.M. (2019). Effects of Cyanobacterial Blooms in Eutrophic Lakes on Water Quality of Connected Rivers. Huan Jing Ke Xue, Huanjing Kexue, 40(2), 603–613.
  • Zhu, J., Wang, X., Zhang, L., Cheng, H., Yang, Z. (2015). System dynamics modeling of the influence of the TN/TP concentrations in socioeconomic water on NDVI in shallow lakes. Ecological Engineering, 76, 27–35.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-eaa2f335-6286-42fa-9e07-ef2db7b1190c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.