PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 36 | 04 |

Tytuł artykułu

Photosynthetic activity and efficiency of Bothriochloa ischaemum and Lespedeza davurica in mixtures across growth periods under water stress

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Photosystem II (PSII) plays an especially important role in the photosynthetic response of higher plants to environmental perturbations and stresses. In this study, a pot experiment was conducted to investigate the differences in the photochemical efficiency and activity of PSII between Bothriochloa ischaemum and Lespedeza davurica in mixtures under three soil water regimes [80 ± 5 % FC (field capacity) (HW), 60 ± 5 % FC (MW) and 40 ± 5 % FC (LW)]. The maximum PSII quantum yield (Fv/Fm), non-photochemical quenching (NPQ), photochemical quenching (qP) and rapid light curve-derived parameters (rETRmax, maximum relative electron transport rate; Ik, minimum saturating irradiance; α, initial slope of the curve) of each species were investigated during the heading period (HP), flowering period (FP) and mature period (MP). The results showed that under HW and MW regimes, the averaged Fv/Fm values of B. ischaemum in mixtures at the HP were significantly higher than in monoculture, and the mean rETRmax values of B. ischaemum during the HP and FP in mixtures were significantly higher than in monoculture. Fv/ Fm values of B. ischaemum in the HP were significantly lower than in the other two growth periods under LW regime. During the MP, the averaged Fv/Fm values of L. davurica in mixtures were significantly higher than in monoculture under the HW regime, and the mean rETRmax values of L. davurica in mixtures were significantly higher than in monoculture under each water regime. In the same mixture ratio, NPQ values of B. ischaemum were significantly higher than those of L. davurica, but the rETRmax and Ik values of B. ischaemum were significantly lower than those of L. davurica under each water regime. The results indicated that application of mixture planting enhanced the photosynthetic performance of both species depending on the developmental stage of the individual plant. B. ischaemum showed the maximal photosynthetic performance in the HP and FP while L. davurica in the MP under both sufficient water supply and water stress conditions.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

36

Numer

04

Opis fizyczny

p.1033-1044,fig.,ref.

Twórcy

autor
  • State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest AandF University, 712100 Yangling, Shaanxi, People's Republic of China
autor
  • State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest AandF University, 712100 Yangling, Shaanxi, People's Republic of China
  • Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, 712100 Yangling, Shaanxi, People's Republic of China
autor
  • State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest AandF University, 712100 Yangling, Shaanxi, People's Republic of China
  • Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, 712100 Yangling, Shaanxi, People's Republic of China
autor
  • State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest AandF University, 712100 Yangling, Shaanxi, People's Republic of China
autor
  • State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest AandF University, 712100 Yangling, Shaanxi, People's Republic of China

Bibliografia

  • Ashraf M, Harris PJC (2013) Photosynthesis under stressful environments: an overview. Photosynthetica 51:163–190. doi:10.1007/s11099-013-0021-6
  • Baker NR (1991) A possible role for photosystem II in environmental perturbations of photosynthesis. Physiol Plantarum 81:563–570. doi:10.1111/j.1399-3054.1991.tb05101.x
  • Balaguer L, Pugnaire FI, Martínez-Ferri E, Armas C, Valladares F, Manrique E (2002) Ecophysiological significance of chlorophyll loss and reduced photochemical efficiency under extreme aridity in Stipa tenacissima L. Plant Soil 240:343–352. doi:10.1023/a:1015745118689
  • Barker DH, Adams WW, Demmig-Adams B, Logan BA, Verhoeven AS, Smith SD (2002) Nocturnally retained zeaxanthin does not remain engaged in a state primed for energy dissipation during the summer in two Yucca species growing in the Mojave Desert. Plant Cell Environ 25:95–103. doi:10.1046/j.0016-8025.2001.00803.x
  • Barron-Gafford GA, Angert AL, Venable DL, Tyler AP, Gerst KL, Huxman TE (2013) Photosynthetic temperature responses of cooccurring desert winter annuals with contrasting resource-use efficiencies and different temporal patterns of resource utilization may allow for species coexistence. J Arid Environ 91:95–103. doi:10.1016/j.jaridenv.2012.12.006
  • Bolhar-Nordenkampf HR, Long SP, Baker NR, Oquist G, Schreiber U, Lechner EG (1989) Chlorophyll fluorescence as a probe of the photosynthetic competence of leaves in the field: a review of current instrumentation. Funct Ecol 3:497–514. doi:101146/annurevpp45060194003221
  • Chesson P, Gebauer RLE, Schwinning S, Huntly N, Wiegand K, Ernest MSK, Sher A, Novoplansky A, Weltzin JF (2004) Resource pulses, species interactions, and diversity maintenance in arid and semi-arid environments. Oecologia 141:236–253. doi:10.1007/s00442-004-1551-1
  • Christen D, Schönmann S, Jermini M, Strasser RJ, Défago G (2007) Characterization and early detection of grapevine (Vitis vinifera) tress responses to esca disease by in situ chlorophyll fluorescence and comparison with drought stress. Environ Exp Bot 60:504–514. doi:10.1016/j.envexpbot.2007.02.003
  • Colom MR, Vazzana C (2003) Photosynthesis and PSII functionality of drought-resistant and drought-sensitive weeping lovegrass plants. Environ Exp Bot 49:135–144. doi:10.1016/s0098-8472(02)00065-5
  • Cornic G, Fresneau C (2002) Photosynthetic carbon reduction and carbon oxidation cycles are the main electron sinks for photosystem II activity during a mild drought. Ann Bot 89:887–894. doi:10.1093/aob/mcf064
  • Cornic G, Massacci A (2004) Leaf photosynthesis under drought stress. Photosynthesis and the environment. Springer, The Netherlands, pp 347–366
  • Dijkstra FA, Blumenthal D, Morgan JA, LeCain DR, Follett RF (2010) Elevated CO₂ effects on semi-arid grassland plants in relation to water availability and competition. Funct Ecol 24:1152–1161. doi:10.1111/j.1365-2435.2010.01717.x
  • Duan DP, Xu BC, Niu FR, Xu WZ (2012) Effects of water and phosphorus on chlorophyll fluorescence characteristics of different position leaves in Lespedeza daurica. Pratac Sci 29:422–428 (in Chinese)
  • Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. BBA-Gen Subjects 990:87–92. doi:10.1016/s0304-4165(89)80016-9
  • Griffiths H, Parry MAJ (2002) Plant responses to water stress. Ann Bot 89:801–802. doi:10.1093/aob/mcf159
  • Grzesiak MT (2009) Impact of soil compaction on root architecture, leaf water status, gas exchange and growth of maize and triticale seedlings. Plant Root 3:10–16. doi:10.3117/plantroot.3.10
  • Kelty MJ (1992) Comparative productivity of monocultures and mixed-species stands. The ecology and silviculture of mixed-species forests. Springer, The Netherlands, pp 125–141
  • Kemp PR, Williams GJ III (1980) A physiological basis for niche separation between Agropyron Smithii (C₃) and Bouteloua Gracilis (C₄). Ecology 61:846–858. doi:10.2307/1936755
  • Krall JP, Edwards GE (1992) Relationship between photosystem II activity and CO₂ fixation in leaves. Physiol Plantarum 86:180–187. doi:10.1111/j.1399-3054.1992.tb01328.x
  • Lambrev PH, Miloslavina Y, Jahns P, Holzwarth AR (2012) On the relationship between non-photochemical quenching and photo-protection of Photosystem II. BBA-Bioenergetics 1817:760–769. doi:10.1016/j.bbabio.2012.02.002
  • Lei YB, Yin CY, Li CY (2006) Differences in some morphological, physiological, and biochemical responses to drought stress in two contrasting populations of Populus przewalskii. Physiol Plantarum 127:182–191. doi:10.1111/j.1399-3054.2006.00638.x
  • Li CY, Wang KY (2003) Differences in drought responses of three contrasting Eucalyptus microtheca F Muell. populations. For Ecol Manag 179:377–385. doi:10.1016/s0378-1127(02)00552-2
  • Liu WJ, Yuan S, Zhang NH, Lei T, Duan HG, Liang HG, Lin HH (2006) Effect of water stress on photosystem 2 in two wheat cultivars. Biol Plantarum 50:597–602. doi:10.1007/s10535-006-0094-1
  • Liu CC, Liu YG, Guo K, Fan DY, Li GQ, Zheng YR, Yu LF, Yang R (2011) Effect of drought on pigments, osmotic adjustment and antioxidant enzymes in six woody plant species in karst habitats of southwestern China. Environ Exp Bot 71:174–183. doi:10.1016/j.envexpbot.2010.11.012
  • Lu CM, Zhang JH (1999) Effects of water stress on photosystem II photochemistry and its thermostability in wheat plants. J Exp Bot 50:1199–1206. doi:10.1093/jxb/50.336.1199
  • Maricle BR, Adler PB (2011) Effects of precipitation on photosynthesis and water potential in Andropogon gerardii and Schizachyrium scoparium in a southern mixed grass prairie. Environ Exp Bot 72:223–231. doi:10.1016/j.envexpbot.2011.03.011
  • Ogaya R, Penuelas J, Asensio D, Llusià J (2011) Chlorophyll fluorescence responses to temperature and water availability in two co-dominant Mediterranean shrub and tree species in a longterm field experiment simulating climate change. Environ Exp Bot 73:89–93. doi:10.1016/j.envexpbot.2011.08.004
  • Oukarroum A, Schansker G, Strasser RJ (2009) Drought stress effects on photosystem I content and photosystem II thermotolerance analyzed using Chl a fluorescence kinetics in barley varieties differing in their drought tolerance. Physiol Plantarum 137:188–199. doi:10.1111/j.1399-3054.2009.01273.x
  • Pearcy RW, Tumosa N, Williams K (1981) Relationships between growth, photosynthesis and competitive interactions for a C₃ and C₄ plant. Oecologia 48:371–376. doi:10.1007/bf00346497
  • Platt T, Harrison WG, Irwin B, Horne EP, Gallegos CL (1982) Photosynthesis and photoadaptation of marine phytoplankton in the Arctic. Deep-Sea Res 29:1159–1170. doi:10.1016/0198-0149(82)90087-5
  • Porporato A, Daly E, Rodriguez-Iturbe I (2004) Soil water balance and ecosystem response to climate change. Am Nat 164:625–632. doi:10.1086/424970
  • Ralph PJ, Gademann R (2005) Rapid light curves: a powerful tool to assess photosynthetic activity. Aquat Bot 82:222–237. doi:10.1016/j.aquabot.2005.02.006
  • Ralph PJ, Polk SM, Moore KA, Orth RJ, Smith WO Jr (2002) Operation of the xanthophyll cycle in the seagrass Zostera marina in response to variable irradiance. J Exp Mar Biol Ecol 271:189–207. doi:10.1016/s0022-0981(02)00047-3
  • Robledo D, Freile-Pelegrín Y (2005) Seasonal variation in photosynthesis and biochemical composition of Caulerpa spp. (Bryopsidales, Chlorophyta) from the Gulf of Mexico. Phycologia 44:312–319. doi:10.2216/0031-8884(2005)44[312:svipab]2.0.co;2
  • Ruban AV, Murchie EH (2012) Assessing the photoprotective effectiveness of non-photochemical chlorophyll fluorescence quenching: a new approach. BBA-Bioenergetics 1817:977–982. doi:10.1016/j.bbabio.2012.03.026
  • Sage RF, Kubien DS (2007) The temperature response of C₃ and C₄ photosynthesis. Plant Cell Environ 30:1086–1106. doi:10.1111/j.1365-3040.2007.01682.x
  • Sánchez-Rodríguez E, Rubio-Wilhelmi MDM, Blasco B, Leyva R, Romero L, Ruiz JM (2012) Antioxidant response resides in the shoot in reciprocal grafts of drought-tolerant and drought-sensitive cultivars in tomato under water stress. Plant Sci 188:89–96. doi:10.1016/j.plantsci.2011.12.019
  • Schreiber U (2004) Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method: an overview. Chlorophyll a fluorescence. Springer, The Netherlands, pp 279–319
  • Schreiber U, Schliwa U, Bilger W (1986) Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth Res 10:51–62. doi:10.1007/bf00024185
  • Shan L, Deng XP, Su P, Huang ZB, Zhang SQ, Zhang ZB (2000) Excavating the potentiality of crop drought-resistance and water saving-the adaptability and adjustment of crop to highly variable and low water environment. J Agri Sci Technol 2:66–70 (in Chinese)
  • Silvertown J (2004) Plant coexistence and the niche. Trends Ecol Evol 19:605–611. doi:10.1016/j.tree.2004.09.003
  • Song R, Zhao CY, Liu J, Zhang J, Du YX, Li JZ, Sun HZ, Zhao HB, Zhao QZ (2013) Effect of sulphate nutrition on arsenic translocation and photosynthesis of rice seedlings. Acta Physiol Plant 35:3237–3243. doi:10.1007/s11738-013-1358-y
  • Szota C, Farrell C, Koch JM, Lambers H, Veneklaas EJ (2011) Contrasting physiological responses of two co-occurring eucalypts to seasonal drought at restored bauxite mine sites. Tree Physiol 31:1052–1066. doi:10.1093/treephys/tpr085
  • Terzi R, Saglam A, Kutlu N, Nar H, Kadioglu A (2010) Impact of soil drought stress on photochemical efficiency of photosystem II and antioxidant enzyme activities of Phaseolus vulgaris cultivars. Turk J Bot 34:1–10. doi:10.3906/bot-0905-20
  • Throop HL, Reichmann LG, Sala OE, Archer SR (2012) Response of dominant grass and shrub species to water manipulation: an ecophysiological basis for shrub invasion in a Chihuahuan Desert Grassland. Oecologia 169:373–383. doi:10.1007/s00442-011-2217-4
  • Tilman D (1997) Community invasibility, recruitment limitation, and grassland biodiversity. Ecology 78:81–92. doi:10.1890/12-1706.1
  • Wang J, Xu BC, Gao ZJ, Duan DP, Niu FR, Xu WZ (2012) Photosynthetic diurnal changes of Bothriochloa ischaemum mixed sowing with Lespedeza davurica in loess hill-gully region. Acta Agrestia Sin 20:693–698 (in Chinese)
  • Whitmarsh J (1999) The photosynthetic process. Concepts in photobiology. Springer, The Netherlands, pp 11–51
  • Wilsey BJ (2010) Productivity and subordinate species response to dominant grass species and seed source during restoration. Restor Ecol 18:628–637. doi:10.1111/j.1526-100x.2008.00471.x
  • Woo NS, Badger MR, Pogson BJ (2008) A rapid, non-invasive procedure for quantitative assessment of drought survival using chlorophyll fluorescence. Plant Methods 4:27–42. doi:10.1186/1746-4811-4-27
  • Xu BC, Shan L, Li FM (2007) Comparison of ecophysiological characteristics of seven plant species in semiarid loess hillygully region. Chin J Appl Ecol 18:990–996 (in Chinese)
  • Xu BC, Xu WZ, Huang J, Shan L, Li FM (2011a) Biomass allocation, relative competitive ability and water use efficiency of two dominant species in semiarid Loess Plateau under water stress. Plant Sci 181:644–665. doi:10.1016/j.plantsci.2011.03.005
  • Xu BC, Xu WZ, Huang J, Shan L, Li FM (2011b) Biomass production and relative competitiveness of a C₃ legume and a C₄ grass codominant in the semiarid Loess Plateau of China. Plant Soil 347:25–39. doi:10.1007/s11104-011-0724-z
  • Yachi S, Loreau M (2007) Does complementary resource use enhance ecosystem functioning? A model of light competition in plant communities. Ecol Lett 10:54–62. doi:10.1111/j.1461-0248.2006.00994.x
  • Zhang XL, Zang RG, Li CY (2004) Population differences in physiological and morphological adaptations of Populus davidiana seedlings in response to progressive drought stress. Plant Sci 166:791–797. doi:10.1016/j.plantsci.2003.11.016

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-e9a7a01c-78bd-43d6-8238-057f2f1ce1fc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.