PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 35 | 05 |

Tytuł artykułu

Short-term growth of meadow fescue with atmospheric CO2 enrichment decreases freezing tolerance, modifies photosynthetic apparatus performance and changes the expression of some genes during cold acclimation

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The objective of this study was to assess the effect of an elevated atmospheric CO2 molar ratio on freezing tolerance, photosynthetic apparatus performance and expression of CBF6, Cor14b and LOS2 in meadow fescue (Festuca pratensis Huds.). It was shown that cold acclimation under a CO2 molar ratio of 800 lmol mol(air)-1 decreased the freezing tolerance of meadow fescue when compared to the ambient CO2 level. This effect was not related either to changes observed in PSII redox state or to photosynthetic acclimation to cold, which was in fact more effective at an elevated CO2 level. The decrease in freezing tolerance was linked to changes in the expression of CBF6 and LOS2 genes, whereas the protective effect on photosynthetic apparatus was connected with the activation of a non-photochemical mechanism of photoprotection as well as upregulation of FpCOR14b expression.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

35

Numer

05

Opis fizyczny

p.1543-1554,fig.,ref.

Twórcy

autor
  • Department of Plant Physiology, University of Agriculture in Krako´w, Podłu_zna 3, 30-239 Krako´w, Poland
autor
  • Department of Plant Physiology, University of Agriculture in Krako´w, Podłu_zna 3, 30-239 Krako´w, Poland
autor
  • Department of Plant Physiology, University of Agriculture in Krako´w, Podłu_zna 3, 30-239 Krako´w, Poland

Bibliografia

  • An Y-Q, McDowell JM, Huang S, McKinney EC, Chambliss S, Meagher RB (1996) Strong, constitutive expression of the Arabidopsis ACT2/ACT8 actin subclass in vegetative tissues. Plant J 10:107–121
  • Bertrand A, Pre´vost D, Bigras FJ, Castonguay Y (2007) Elevated atmospheric CO2 and strain of rhizobium alter freezing tolerance and cold-induced molecular changes in alfalfa (Medicago sativa). Ann Bot 99:275–284
  • Bigras FJ, Bertrand A (2006) Responses of Picea mariana to elevated CO2 concentration during growth, cold hardening and dehardening: phenology, cold tolerance, photosynthesis and growth. Tree Physiol 26:875–888
  • Bilger W, Bjorkman O (1991) Temperature-dependence of violaxanthin deepoxidation and nonphotochemical fluorescence quenching in intact leaves of Gossypium-hirsutum L. and Malva parviflora L. Planta 84:226–234
  • Climate change 2007: synthesis report (an assessment of the intergovernmental panel on climate change). http://www.ipcc.ch/.Downloaded 10 September 2011
  • Chinnusamy V, Zhu J, Zhu J-K (2007) Cold stress regulation of gene expression in plants. Trends Plant Sci 12:444–451
  • Dalen LS, Johnsen O, Ogner G (2001) CO2 enrichment and development of freezing tolerance in Norway spruce. Physiol Plantarum 113:533–540
  • Dhont C, Castonguay Y, Nadeau P, Be´langer G, Drapeau R, Laberge S, Avice J-C, Chalifour F-P (2006) Nitrogen reserves, spring regrowth and winter survival of field-growth alfalfa (Medicago sativa) defoliated in the autumn. Ann Bot 97:109–120
  • Flint HJ, Boyce BR, Brattie DJ (1967) Index of injury, a useful expression of freezing injuries to plant tissues as determined by the electric method. Can J Plant Sci 47:229–239
  • Genty B, Briantais J-M, Baker NR (1989) The relationship between the quantum yield of the photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92
  • Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF (1998) Low temperature regulation of Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J 16:433–442
  • Humphreys M, Gasior D, Lesniewska-Bocianowska A, Zwierzykowski Z, Rapacz M (2007) Androgenesis as a means of dissecting complex genetic and physiological controls: selecting useful gene combinations for breeding freezing tolerant grasses. Euphitica 158:337–345
  • Huner N, Öquist G, Hurry V, Krol M, Falk S, Griffith M (1993) Photosynthesis, photoinhibition and low temperature acclimation in cold tolerant plants. Photosyn Res 37:19–39
  • Huner N, Maxwell DP, Gray GR, Savitch LV, Krol M, Ivanov AG, Falk S (1996) Sensing environmental temperature change through imbalances between energy supply and energy consumption: redox state of photosystem II. Physiol Plant 98: 358–364
  • Huner N, Öquist G, Sarhan F (1998) Energy balance and acclimation to light and cold. Trends Plant Sci 3:224–230
  • Jurczyk B, Rapacz M, Budzisz K, Barcik W, Sasal M (2012) The effects of cold, light and time of day during low-temperature shift on the expression of CBF6, FpCor14b and LOS2 in Festuca pratensis. Plant Sci 183:143–148
  • Kosmala A, Zwierzykowski Z, Gasior D, Rapacz M, Zwierzykowska E, Humphreys MW (2006) GISH/FISH mapping of genes for freezing tolerance transferred from Festuca pratensis to Lolium multiflorum. Heredity 96:243–251
  • Kosmala A, Bocian A, Rapacz M, Jurczyk B, Zwierzykowski Z (2009) Identification of leaf proteins differentially accumulated during cold acclimation between Festuca pratensis plants with distinct levels of frost tolerance. J Exp Bot 60:3595–3609
  • Larsen A (1978) Freezing tolerance in grasses. Methods for testing in controlled environments. Scientific Reports of the Agricultural University of Norway. Dept Farm Crops Rep 57:2–54
  • Lee H, Guo Y, Ohta M, Xiong L, Stevenson B, Zhu J-K (2002) LOS2, a genetic locus required for cold-responsive gene transcription encodes a bi-functional enolase. EMBO J 21:2692–2702
  • Lichtenthaler H, Buschmann C, Knapp M (2004) Measurement of chlorophyll fluorescence kinetics (Kautsky effect) and the chlorophyll fluorescence decrease ratio (RFd-values) with PAM fluorimeter. In: Filek M, Biesaga-Kościelniak J, Marcińska I (eds) Analytical methods in plant stress biology. The Franciszek Górski Institute Plant Physiology, Polish Academy of Sciences, Kraków, pp 93–111
  • Loveys BR, Egerton JJG, Ball MC (2006) Higher daytime leaf temperatures contribute to lower freeze tolerance under elevated CO2. Plant Cell Environ 29:1077–1086
  • Maruyama K, Sakuma Y, Kasuga M, Ito Y, Seki M, Goda H, Shimada Y, Yoshida S, Shinozaki K, Yamaguchi-Shinozaki K (2004) Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using microarray systems. Plant J 38:982–993
  • Moore BD, Cheng SH, Sims D, Seemann JR (1999) The biochemical and molecular basis for photosynthetic acclimation to elevated atmospheric CO2. Plant Cell Environ 22:567–582
  • Ndong C, Danyluk J, Huner NPA, Sarhan F (2001) Survey of gene expression in winter rye during changes in growth temperature, irradiance or excitation pressure. Plant Mol Biol 45:691–703
  • Novillo F, Alonso JM, Ecker JR, Salinas J (2004) CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Proc Natl Acad Sci 101:3985–3990
  • Obrist D, Arnone JA III, Körner Ch (2001) In situ effects of elevated atmospheric CO2 on leaf freezing resistance and carbohydrates in a native temperate grassland. Ann Bot 87:839–844
  • Rapacz M, Wolanin (Jurczyk) B, Hura K, Tyrka M (2008) The effect of cold acclimation on photosynthetic apparatus and the expression of COR14b in four genotypes of barley (Hordeum vulgare) contrasting in their tolerance to freezing and high light treatment in cold. Ann Bot 101:689–699
  • Rapacz M, Sasal M, Gut M (2011) Chlorophyll fluorescence-based studies of frost damage and the tolerance for cold-induced photoinhibition in freezing tolerance analysis of triticale (9Triticosecale Wittmack). J Agron Crop Sci 197:378–389
  • Sandve SR, Kosmala A, Rudi H, Fjellheim S, Rapacz M, Yamada T, Rognli OA (2011) Molecular mechanisms underlying frost tolerance in perennial grasses adapted to cold climates. Plant Sci 180:69–77
  • Schreiber U, Bilger W, Neubauer C (1994) Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. In: Schultze ED, Caldwell MM (eds) Ecophysiology of photosynthesis. Ecological studies. Springer, Berlin, pp 49–70
  • Steponkus PL, Uemura M, Joseph RA, Gilmour SJ (1998) Mode of action of the COR15a gene on the freezing tolerance of Arabidopsis thaliana. Plant Biol 95:14570–14575
  • Terry AC, Quick WP, Beerling DJ (2000) Long-term growth of Glinco with CO2 enrichment increases leaf ice nucleation temperatures and limits recovery of the photosynthetic system from freezing. Plant Physiol 124:183–190
  • Vogel JT, Zarka DG, Van Buskirk HA, Fowler SG, Thomashow MF (2005) Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant J 41:195–211

Uwagi

rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-e7d71b70-e4f1-4d35-be5b-0165a08788a6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.