PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 24 | 1 |

Tytuł artykułu

Graphical method for great circle routes

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
A great circle route (GCR) is the shortest route on a spherical earth model. Do we have a visual diagram to handle the shortest route? In this paper, a graphical method (GM) is proposed to solve the GCR problems based on the celestial meridian diagram (CMD) in celestial navigation. Unlike developed algebraic methods, the GM is a geometric method. Appling computer software to graph, the GM does not use any equations but is as accurate as using algebraic methods. In addition, the GM, which emphasizes the rotational surface, can depict a GCR and judge its benefit

Słowa kluczowe

Wydawca

-

Rocznik

Tom

24

Numer

1

Opis fizyczny

p.12-21,fig.,ref.

Twórcy

autor
  • Department of Civil Engineering, National Taiwan University, Taiwan
autor
  • Merchant Marine Department, National Taiwan Ocean University, Taiwan
autor
  • Department of Civil Engineering, National Taiwan University, No.1, Sec.4, Roosevelt Road, Taipei, 10617, Taiwan

Bibliografia

  • 1. Bowditch, N.: The American Practical Navigator, 2002 Bicentennial Edition, National Imagery and Mapping Agency, Bethesda, Maryland, 2002.
  • 2. Chen, C. L.: A Systematic Approach for Solving the Great Circle Track Problems Based on Vector Algebra, Polish Maritime Research, 23(2), pp. 3-13, 2016.
  • 3. Chen, C. L., Hsieh, T. H. and Hsu, T. P.: A novel approach to solve the great circle track based on rotation transformation, Journal of Marine Science and Technology, 23(1), pp. 13-20, 2015.
  • 4. Chen, C. L., Hsu, T. P. and Chang, J. R.: A novel approach to great circle sailings: the great circle equation, The Journal of Navigation, 57(2), pp. 311-320, 2004.
  • 5. Chen, C. L., Liu, P. F. and Gong, W. T.: A simple approach to great circle sailing: the COFI method, The Journal of Navigation, 67(3), pp. 403-418, 2014.
  • 6. Chiang, C. H. and Tseng, A. Y.: Some ideas on calculating great circle sailings, The Journal of Navigation, 45(1), pp. 136-138, 1992.
  • 7. Cutler, T. J.: Dutton’s Nautical Navigation, Fifteenth Edition, Naval Institute Press, Maryland, 2004.
  • 8. Earle, M. A.: Vector solutions for great circle navigation, The Journal of Navigation, 58(3), pp. 451-457, 2005.
  • 9. Miller, A. R., Moskowitz, I. S. and Simmen, J.: Traveling on the curved earth, NAVIGATION, Journal of the Institute of Navigation, 38(1), pp. 71-78, 1991.
  • 10. Nastro, V. and Tancredi, U.: Great circle navigation with vectorial methods, The Journal of Navigation, 63(3), pp. 557-563, 2010.
  • 11. Royal Navy: The Admiralty Manual of Navigation: The Principles of Navigation, Volume 1, Tenth Edition, Nautical Institute, London, 2008.
  • 12. Sa, S. H.: Navigation, Volume 2, Wensheng Book Store, Taiwan, 2010. (In Chinese)
  • 13. Tseng, W. K. and Chang, W. J.: Analogues between 2D linear equations and great circle sailing, The Journal of Navigation, 67(1), pp. 101-112, 2014.
  • 14. UNCTAD: Review of Maritime Transport, Geneva: United Nations, 2015.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-e7ba751d-51d7-4c55-8270-c4e2ae8474fc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.