PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 33 | 3 |

Tytuł artykułu

Factors altering the membrane fluidity of spinach thylakoid as determined by fluorescence polarization

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Alterations in fluidity of thylakoid membranes isolated from spinach chloroplasts in response to sodium bisulfite (NaHSO₃), hydrogen peroxide (H₂O₂), sodium dodecyl sulfate (SDS), bovine serum albumin (BSA), and free linoleic acid (LA) were investigated by means of a fluorescence polarization study with 1,6-diphenyl-1,3,5- hexatriene as the fluorescence probe. A decrease in fluidity and an increase in microviscosity of membrane were caused by NaHSO₃ and H₂O₂ treatment. In contrast, SDS and BSA were found to increase thylakoid membranes fluidity and decrease microviscosity, in which the corresponding correlation coefficients were -0.9995 to -0.9516 (SDS) and -0.9359 (BSA), respectively. No changes in thylakoid membranes fluidity induced by free LA were found until its concentration above 5 mM where the polarization value (P value) declined (increased fluidity). The results suggest that the changes in thylakoids membrane fluidity might depend on the characteristics, mechanism and extent of the interactions between membrane components and compounds added.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

33

Numer

3

Opis fizyczny

p.1019-1024,fig.,ref.

Twórcy

autor
  • Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510520, China
autor
  • Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510520, China
autor
  • Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510520, China
autor
  • College of Life Science, South China Normal University, Guangzhou 510631, China

Bibliografia

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399
  • Arnon DI (1949) Copper enzymes in isolated chloroplast: polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15
  • Barber J, Chow WS, Scoufflaire C, Lannoye R (1980) The relationship between thylakoid stacking and salt induced chlorophyll fluorescence change. Biochim Biophys Acta 591:92–103
  • Beck R, Bertolino S, Abbot SE, Aaronson PI, Smirnov SV (1998) Modulation of arachidonic acid release and membrane fluidity by albumin in vascular smooth muscle and endothelial cells. Circulation Res 83:923–931
  • Bowler C, Van Camp W, Van Montagu M, Inze D (1994) Superoxide dismutase in plant. CRC Crit Rev Plant Sci 13:199–218
  • Covello PS, Chang A, Dumbroff EB, Thompson JE (1989) Inhibition of photosystem II precedes thylakoid membrane lipid peroxidation in bisulfite-treated leaves of Phaseolus vuigaris. Plant Physiol 90:1492–1497
  • De Santis A, Landi P, Genchi G (1999) Changes of mitochondrial properties in maize seedlings associated with selection for germination at low temperature. Fatty acid composition, cytochrome c oxidase, and adenine nucleotide translocase activities. Plant Physiol 119:743–754
  • Deo PM, Biswal UC, Biswal B (2006) Water stress-sensitized photoinhibition in senescing cotyledons of clusterbean: changes in thylakoid structure and inactivation of photosystem 2. Photosynthetica 44:187–192
  • Desikan R, Mackerness SA, Hancock JT, Neill SJ (2001) Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol 127:159–172
  • Dimitrova MN, Matsumura H, Dimitrova A, Neitchev VZ (2000) Interaction of albumins from different species with phospholipid liposomes. Mutiple binding site system. Int J Biol Macromol 27:187–194
  • Garavito RM, Ferguson-Miller S (2001) Detergents as tools in membrane biochemistry. J Biol Chem 276:32403–32406
  • Hiller RG, Raison JK (1980) The fluidity of chloroplast thylakoid membranes and their constituent lipids: a comparative study by electron spin resonance. Biochim Biophys Acta 599:63–72
  • Jajoo A, Kawamori A (2006) Anion effects on the structural organization of spinach thylakoid membranes. Biol Plant 50:444–446
  • Keller S, Heerklotz H, Jahnke N, Blume A (2006) Thermodynamics of lipid membrane solubilization by sodium dodecyl sulfate. Biophys J 90:4509–4521
  • Kopanchur S, Rinken A (2001) Changes in membrane fluidity during the micelle formation determine the efficiency of the solubilization of muscarinic receptors. Proc Estonian Acad Sci Chem 50:229–240
  • Kragh-Hansen U, le Maire M, Moller JV (1998) The mechanism of detergent solubilization of liposomes and protein-containing membranes. Biophys J 75:2932–2946
  • Li B, Xing D, Zhang L (2007) Involvement of NADPH oxidase in sulfur dioxide-induced oxidative stress in plant cells. Photochem Photobiol Sci 6:628–634
  • Lin ZF, Li XP, Lin GZ, Peng CL (1997) Effects of protein modifiers, denaturants and active oxygen on photosystem 11 photoinactivation of spinach leaves. J Trop Subtrop Bot 5:59–64 (in Chinese)
  • Lin ZF, Liu N, Lin GZ, Pan XP, Peng CL (2007) Stress-induced alteration of chlorophyll fluorescence polarization and spectrum in leaves of Alocasia macrorrhiza L. Schott J Fluoresc 17:663–669
  • Lin ZF, Liu N, Chen SW, Lin GZ, Mo H, Peng CL (2011) Bisulfite hydroponic induced oxidative stress and its effect on nutrient element compositions in rice seedlings. Bot Stud (accepted)
  • Los DA, Murata N (2004) Membrane fluidity and its roles in the perception of environmental signals. Biochim Biophys Acta 1666:142J–157J
  • Maiseyenkava YA, Pshybytko NL, Kabashnikova LF (2005) Greening barley seedlings under high temperature. Gen Appl Plant Physiol 31:3–14
  • Millner PA, Mitchell RAC, Chapman DJ, Barber J (1984) Fluidity properties of isolated chloroplast thylakoid lipids. Photosynth Res 5:63–76
  • Moosavi-Movahedi AA (2005) Thermodynamics of protein denaturation by sodium dodecyl sulfate. J Iran Chem Soc 2:189–196
  • Navari-Izzo F, Ricci F, Vazzana C, Quartacci MF (1995) Unusual composition of thylakoid membranes of the resurrection plant Boea hygroscopica: changes in lipids upon dehydration and rehydration. Physiol Plant 94:135–142
  • Páli T, Garab G, Horváth LI, Kóta ZL (2003) Functional significance of the lipid–protein interface in photosynthetic membranes. Cell Mol Life Sci 60:1591–1606
  • Shaikh SR, Edidin M (2006) Polyunsatursted fatty acids, membrane organization, T cells, and antigen presentation. Am J Clin Nutr 84:1277–1289
  • Shinitzky M, Barenholz Y (1978) Fluidity parameters of lipid regions determined by fluorescence polarization. Biochim Biophys Acta 515:367–394
  • Velitchkova M, Popova A (2005) High light-induced changes of 77K fluorescence emission of pea thylakoid membrane with altered membrane fluidity. Bioelectrochemistry 67:81–90
  • Vogg G, Heim R, Gotschy B, Beck E, Hansen J (1998) Frost hardening and photosynthetic performance of Scots pine (Pinus sylvestris L.) II. Seasonal changes in the fluidity of thylakoid membranes. Planta 204:201–206
  • Yamamoto Y, Ford RC, Barbar J (1981) Relationship between thylakoid membrane fluidity and the functioning of pea chloroplasts. Plant Physiol 67:1069–1072
  • Yang CM, Hsu JC, Lu YK, Yin MH (1996) Pigment solubilization of the chloroplast thylakoid membranes by a surfactant. Bot Bull Acad Sin 37:121–126
  • Yu B, Benning C (2003) Anionic lipids are required for chloroplast structure and function in Arabidopsis. Plant J 36:762–770
  • Zavodnik IB, Zaborowski A, Nickurzak A, Bryszewska M (1997) Effect of free fatty acid on erythrocyte morphology and membrane fluidity. Biochem Mol Biol 42:123–133

Uwagi

rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-e6f83dde-d956-447f-95de-a13bc0b3562b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.