PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 27 | 3 |

Tytuł artykułu

The relationship between terminal bud death and programmed cell death in Paulownia spp.

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
To investigate the reasons for terminal bud death, the relationship between terminal bud death and programmed cell death in Paulownia was studied using morphocytology and DNA ladder techniques with one-year-old seedlings of Paulownia spp. The results showed that there were no characteristic morphological changes of the chromatin/chromosomes or nucleus, such as chromatin condensation, nuclear shrinkage, distortion, or degradation after DAPI (4’,6-diamidino-2-phenylindo-le) staining, and DNA laddering was not found in cells after agarose gel electrophoresis. Preliminarily results suggest that the terminal bud death of Paulownia spp. is not clearly related to programmed cell death.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

27

Numer

3

Opis fizyczny

p.1413-1417,fig.,ref.

Twórcy

autor
  • Forestry Department, Henan Agricultural University, Nongye Road NO.63, Zhengzhou 450002, People’s Republic of China
autor
  • Forestry Department, Henan Agricultural University, Nongye Road NO.63, Zhengzhou 450002, People’s Republic of China
  • Huanghe University of Science and Technology, Zijingshan Road No.666, Zhengzhou 450000, People’s Republic of China
autor
  • Forestry Department, Henan Agricultural University, Nongye Road NO.63, Zhengzhou 450002, People’s Republic of China

Bibliografia

  • 1. WANG Y.M, MA TIAN X., LIU Z. Progress in the Death Mechanism Research of Paulownia spp. Terminal Buds. Scientia Silvae Sinicae, 49 (4), 117, 2013.
  • 2. VAN D. W., WOLTERING E.J. Many ways to exit? Cell death categories in plants. Trends in Plant Science, 10 (3), 117, 2005.
  • 3. PAN Y.J., LIU L., LIN Y.C. Ethylene antagonizes saltinduced growth retardation and cell death process via transcriptional controlling of ethylene-, BAG- and senescence-associated genes in Arabidopsis. Frontiers in Plant Science, 7 (175), 696, 2016.
  • 4. DOULE S.M., DIAMON M., MCCABE P.F. Chloroplast and reactive oxygen species involvement in apoptotic-like programmed cell death in Arabidopsis suspension cultures. Journal of Experimental Botany 61 (2), 473, 2010.
  • 5. YU M., ZHOU Z., DENG X. Physiological mechanism of programmed cell death aggravation and acceleration in wheat endosperm cells caused by waterlogging, Acta Physiologiae Plantarum, 39 (1), 23, 2017.
  • 6. ZHAN J., HE H.Y., WANG T.J. Aluminum-induced programmed cell death promoted by AhSAG, a senescence-associated gene in Arachis hypoganea L. Plant Science, 210C (9), 108, 2013.
  • 7. RYBACZEK D., MUSIALEK M.W., A BALCERCZYK. Caffeine-induced premature chromosome condensation results in the apoptosis-like programmed cell death in root meristems of Vicia faba. PLoS One, 10 (11), e0142307, 2015.
  • 8. TADA Y., HATA S., TAKATA Y., NAKAYASHIKI H., TOSA Y., MAYAMA S. Induction and signaling of an apoptotic response typified by DNA laddering in the defense response of oats to infection and elicitors. Molecular plant-microbe interactions, 14 (4), 477, 2001.
  • 9. ULUKAYA E., ACILAN C., ARI F. A glance at the methods for detection of apoptosis qualitatively and quantitatively. Turkish Journal of Biochemistry, 36 (3), 261, 2011.
  • 10. XU L.X., CHEN R.J., XU H.J. Identifying stress-related programmed cell death improves research on plant resistance. Chin Sci Bull, 61, 809, 2016.
  • 11. DENG Y.Q., LI P., ZHOU Y. Progress on detection technology of programmed cell death in plant. Biotechnology Bulletin, 33 (3), 52, 2017.
  • 12. MOCHIZUKI H., SHIBUY K., ICHIMURA K. Programmed cell death begins earlier in the mesophyll cells of tulip petals than in the epidermal cells. Postharvest Biology and Technology, 79 (3), 9, 2013.
  • 13. WYLLIE A.H. The genetic regulation of apoptosis. Current Opinion in Genetics & Development , 5, 97, 1995.
  • 14. MOCHIZUKI H., SHIBUY K., ICHIMURA K. Programmed cell death begins earlier in the mesophyll cells of tulip petals than in the epidermal cells. Postharvest Biology and Technology, 79 (3), 9, 2013.
  • 15. XU W.J. Study on Molecular markers related to sex of the Eucommia ulmoides Oliv and bud senescence. Peking University, 2003.
  • 16. LOMBARDI L., LORENZI R. Programmed cell death of the nucellus during Sechium edule Sw. seed development is associated with activation of caspase-like proteases. Journal of Experimental Botany, 58(11), 2949, 2007.
  • 17. GUNAWARDENA A., GREENWOOD J.S., DENGLER N.G. Programmed cell death remodels lace plant leaf shape during development.Plant Cell, 16 (1), 60, 2004.
  • 18. FLORVSZAK W.J., ARASIMOWICZ M., MILCZAREK G., JELEN H., JACKOWIAK H. Only an early nitric oxide burst and the following wave of secondary nitric oxide generation enhanced effective defence responses of pelargonium to a necrotrophic pathogen. New Phytologist, 175 (4), 718, 2007.
  • 19. BAIS H.P., RAMARAO V., SIMON G., CALLAWAY R.M., VIVANCO J.M. Allelopathy and exotic plant invasion: from molecules and genes to species interactions. Science, 301 (5638), 1377, 2003.
  • 20. PANG N., ZHANG F. Hypoxia-Induced Programmed Cell Death in Root-Tip Meristematic Cells of Triticum aestivum L. Acta Biologica Cracoviensia S Botanica, 57 (1), 51 , 2015.
  • 21. NIAN L.I., ZENG J., YA X.U. Effects of Heat Shock Factor AtHsfA1a on Programmed Cell Death in Arabidopsis thaliana under Cold Stress. Agricultural Biotechnology, 3, 57, 2016.
  • 22. KADONO T., TRAN D., ERRAKHI R. Increased anion channel activity is an unavoidable event in ozone-induced programmed cell death. Plos One, 5 (10), e13373, 2010.
  • 23. KRASYLENKO Y., YEMETS A., BLUME Y. Plant microtubules reorganization under the indirect UV-B exposure and during UV-B-induced programmed cell death. Plant Signaling & Behavior, 8 (5):e24031, 2013.
  • 24. SWAPNIL P., YADAV A.K., SRIVASTAV S. Biphasic ROS accumulation and programmed cell death in a cyanobacterium exposed to salinity (NaCl and Na₂SO₄). Algal Research-Biomass Biofuels and Bioproducts, 23, 88, 2017.
  • 25. ARASIMOWICZ J.M., FLORYZSAK W.J., DECKERT J., RUCIŃSKA S.R., GZYL J., PAWLK S.S., ABRAMOWSKI D., JELONEK T., GWÓŹDŹ E. Nitric oxide implication in cadmium-induced programmed cell death in roots and signaling response of yellow lupine plants. Plant Physiology and Biochemistry, 58 (3), 124, 2000.
  • 26. HE H., HUANG W., OO T.L., GU M., HE L.F. Nitric oxide inhibits aluminum-induced programmed cell death in peanut (Arachis hypoganea L.) root tips. Journal of Hazardous Materials, 333, 285, 2017.
  • 27. PANG N., ZHANG F. Hypoxia-Induced programmed cell death in root-tip meristematic cells of Triticum aestivum L. Acta Biologica Cracoviensia Series Botanica, 57(1), 51, 2015.
  • 28. WANG Q., WANG X.F. Programmed cell death of Ulmus pumila L. Seeds during aging and ROS-caspse-3-like pathway mechanism. Acta Botanica Boreali-Occidentalia Sinica, 32 (5), 948, 2012.
  • 29. RYBACZEK D., MUSIALEK M.W., BALCERCZYK A. Caffeine-induced premature chromosome condensation results in the apoptosis-like programmed cell death in root meristems of Vicia faba. Plos One, 10 (11), e0142307, 2015.
  • 30. WANG P., ZHAO L., HOU H.,ZHANG H., HUANG Y.,WANG Y., LI H., GAO F., YAN S., LI L. Epigenetic changes are associated with programmed cell death induced by heat stress in seedling leaves of Zea mays. Plant & Cell Physiology, 56 (5), 965-976. 2015.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-e648f5ee-aec4-409e-a0f8-4290403ad2cb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.