PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 57 | 2 |

Tytuł artykułu

Burgess Shale-type microfossils from the middle Cambrian Kaili Formation, Guizhou Province, China

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Diverse carbonaceous microfossils, including exceptionally preserved remains of non−biomineralizing metazoans, are reported from a basal middle Cambrian interval of the Kaili Formation (Guizhou Province, China). The application of a gentle acid maceration technique complements previous palynological studies by revealing a larger size−class of acritarchs, a richer assemblage of filamentous microfossils, and a variety of previously unrecovered forms. Metazoan fossils include Wiwaxia sclerites and elements derived from biomineralizing taxa, including chancelloriids, brachiopods and hyolithids, in common with previously studied assemblages from the early and middle Cambrian of Canada. In addition, the Kaili Formation has yielded pterobranch remains and an assemblage of cuticle fragments representing “soft−bodied” worms, including a priapulid−like scalidophoran. Our results demonstrate the wide distribution and palaeobiological importance of microscopic “Burgess Shale−type” fossils, and provide insights into the limitations and potential of this largely untapped preservational mode.

Wydawca

-

Rocznik

Tom

57

Numer

2

Opis fizyczny

p. 423-436,fig.,ref.

Twórcy

  • Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, U.K.
autor
autor

Bibliografia

  • Adrianov, A.V. and Malakhov, V.V. 2001. Symmetry of priapulids (Priapulida). 1. Symmetry of adults. Journal of Morphology 247: 99–110.
  • Balthasar, U. and Butterfield, N.J. 2009. Early Cambrian “soft−shelled” brachiopods as possible stem−group phoronids. Acta Palaeontologica Polonica 54: 307–314.
  • Banta, W.C. and Rice, M.E. 1976. A restudy of the Middle Cambrian Burgess Shale fossil worm, Ottoia prolifica. In: M.E. Rice and M. Todorovic (eds.), Proceedings of the International Symposium on the Biology of the Sipuncula and the Echiura, Vol. 2, 79–90. Naucno Delo, Belgrade.
  • Bartley, J.K. 1996. Actualistic taphonomy of cyanobacteria: implications for the Precambrian fossil record. Palaios 11: 571–586.
  • Bengtson, S. 1983. The early history of the Conodonta. Fossils and Strata 15: 5–19.
  • Bengtson, S. and Urbanek, A. 1986. Rhabdotubus, a Middle Cambrian rhabdopleurid hemichordate. Lethaia 19: 293–308.
  • Butterfield, N.J. 1990a. Organic preservation of non−mineralizing organisms and the taphonomy of the Burgess Shale. Paleobiology 16: 272–286.
  • Butterfield, N.J. 1990b. A reassessment of the enigmatic Burgess Shale fossil Wiwaxia corrugata (Matthew) and its relationship to the polychaete Canadia spinosa Walcott. Paleobiology 16: 287–303.
  • Butterfield, N.J. 1994. Burgess Shale−type fossils from a Lower Cambrian shallow−shelf sequence in northwestern Canada.Nature 369: 477–479.
  • Butterfield, N.J. 1995. Secular distribution of Burgess−Shale−type preservation. Lethaia 28: 1–13.
  • Butterfield, N.J. 1996. Fossil preservation in the Burgess Shale: reply. Lethaia 29: 109–112.
  • Butterfield, N.J. 2008. An early Cambrian radula. Journal of Paleontology 82: 543–554.
  • Butterfield, N.J. and Nicholas, C.J. 1996. Burgess Shale−type preservation of both non−mineralizing and 'shelly' Cambrian organisms from the Mackenzie Mountains, northwestern Canada. Journal of Paleontology 70: 893–899.
  • Butterfield, N.J., Knoll, A.H., and Swett, K. 1994. Paleobiology of the Neoproterozoic Svanbergfjellet Formation, Spitsbergen. Fossils and Strata 34: 1–84.
  • Butterfield, N.J., Balthasar, U. and Wilson, L.A. 2007. Fossil diagenesis in the Burgess Shale. Palaeontology 50: 537–543.
  • Conway Morris, S. 1977. Fossil priapulid worms. Special Papers in Palaeontology 20: 1–95.
  • Conway Morris, S. 1985. The Middle Cambrian metazoan Wiwaxia corrugata (Matthew) from the Burgess Shale and Ogygopsis Shale, British Columbia, Canada. Philosophical Transactions of the Royal Society of London B 307: 507–582.
  • Conway Morris, S. 1989. The persistence of Burgess Shale−type faunas: implications for the evolution of deeper−water faunas. Transactions of the Royal Society of Edinburgh 80: 271–283.
  • Conway Morris, S. and Robison, R.A. 1988. More soft−bodied animals and algae from the Middle Cambrian of Utah and British Columbia. University of Kansas Paleontological Contributions 112: 1–48.
  • Dong, X.−P., Bengtson, S., Gostling, N.J., Cunningham, J.A., Harvey, T.H.P., Kouchinsky, A., Val'kov, A.K., Repetski, J.E., Stampanoni, M., Marone, F., and Donoghue, P.C.J. 2010. The anatomy, taphonomy, taxonomy and systematic affinity of Markuelia: Early Cambrian to Early Ordovician scalidophorans. Palaeontology 53: 1291–1314.
  • Durman, P.N. and Sennikov, N.V. 1993. A new rhabdopleurid hemichordate from the Middle Cambrian of Siberia. Palaeontology 36: 283–296.
  • Gaines, R.R., Briggs, D.E.G., and Zhao, Y. 2008. Cambrian Burgess Shale−type deposits share a common mode of fossilization. Geology 36: 755–758.
  • Gostlin, K.E. 2006. Sedimentology and Palynology of the Middle Cambrian Burgess Shale. 245 pp. Unpublished Ph.D. thesis, Department of Geology, University of Toronto.
  • Han, J., Yang, Y., Zhifei, Z., Liu, J., and Shu, D. 2007. New observations on the palaeoscolecid work Tylotites petiolarisfrom the Cambrian Chengjiang Lagerstätte, south China. Paleontological Research 11: 59–69.
  • Harvey, T.H.P. 2010. Carbonaceous preservation of Cambrian hexactinellid sponge spicules. Biology Letters 6: 834–837.
  • Harvey, T.H.P. and Butterfield, N.J. 2008. Sophisticated particle−feeding in a large Early Cambrian crustacean. Nature 452: 868–871.
  • Harvey, T.H.P., Dong, X., and Donoghue, P.C.J. 2010. Are palaeoscolecids ancestral ecdysozoans? Evolution and Development 12: 177–200.
  • Holmer, L.E. and Caron, J.−B. 2006. A spinose stem group brachiopod with pedicle from the Middle Cambrian Burgess Shale. Acta Zoologica 87: 273–290.
  • Horodyski, R.J. and Donaldson, J.A. 1980. Microfossils from the Middle Proterozoic Dismal Lakes Group, Arctic Canada. Precambrian Research 11: 125–159.
  • Huang, Y.−Z., Wang, H.−Y., Zhao, Y.−L., and Dai, X.−C. 1994. Brachiopods from Early–Middle Cambrian Kaili Formation in Taijiang, Guizhou [in Chinese, with English summary]. Acta Palaeontologica Sinica 33: 335–344.
  • Huang, D.−Y., Vannier, J., and Chen, J.−Y. 2004a. Anatomy and lifestyles of Early Cambrian priapulid worms exemplified byCorynetis and Anningvermis from the Maotianshan Shale (SW China). Lethaia 37: 21–33.
  • Huang, D.−Y., Chen, J.−Y., Vannier, J., and Saiz Salinas, J.I. 2004b. Early Cambrian sipunculan worms from southwest China. Proceedings of the Royal Society of London B 271: 1671–1676.
  • Knoll, A.H., Swett, K., and Mark, J. 1991. Paleobiology of a Neoproterozoic tidal flat/lagoonal complex: the Draken Conglomerate Formation, Spitzbergen. Journal of Paleontology 65: 531–570.
  • Kozłowski, R. 1947. Les affinités des graptolithes. Biological Reviews 22: 93–108.
  • Lin, J.−P. 2009. Review of the depositional environment of the Kaili Formation (Cambrian Series 2–3 boundary interval: China). Memoirs of the Association of Australasian Palaeontologists 37: 131–149.
  • Lin, J.−P. and Briggs, D.E.G. 2010. Burgess Shale−type preservation: a comparison of naraoiids (Arthropoda) from three Cambrian localities. Palaios 25: 463–467.
  • Maas, A., Waloszek, D., Haug, J.T., and Müller, K.J. 2007. A possible larval roundworm from the Cambrian 'Orsten' and its bearing on the phylogeny of Cycloneuralia. Memoirs of the Association of Australasian Palaeontologists 34: 499–519.
  • Maas, A., Waloszek, D., Haug, J.T., and Müller, K.J. 2009. Loricate larvae (Scalidophora) from the Middle Cambrian of Australia. Memoirs of the Association of Australasian Palaeontologists 37: 281–302.
  • Maletz, J., Steiner, M., and Fatka, O. 2005. Middle Cambrian pterobranchs and the question: what is a graptolite? Lethaia 38: 73–85.
  • Mankiewicz, C. 1992. Obruchevella and other microfossils in the Burgess Shale: preservation and affinity. Journal of Paleontology 66: 717–729.
  • Mao, J.−R., Zhao, Y.−L., and Yu, P. 1994. Noncalcareous algae of Kaili Fauna in Taijiang, Guizhou [in Chinese, with English summary]. Acta Palaeontologica Sinica 33: 345–349.
  • Martí Mus, M. and Bergström, J. 2007. Skeletal microstructure of helens, lateral spines of hyolithids. Palaeontology 50: 1231–1243.
  • Morse, M.P. 1981. Meiopriapulus fijiensis n. gen., n. sp.: an interstitial priapulid from coarse sand in Fiji. Transactions of the American Microscopical Society 100: 239–252.
  • Page, A., Gabbott, S.E., Wilby, P.R., and Zalasiewicz, J.A. 2008. Ubiquitous Burgess Shale−style “clay templates” in low−grade metamorphic mudrocks. Geology 36: 855–858.
  • Porter, S.M. 2008. Skeletal microstructure indicates chancelloriids and halkieriids are closely related. Palaeontology 51: 865–879.
  • Powell, W. 2003. Greenschist−facies metamorphism of the Burgess Shale and its implications for models of fossil formation and preservation. Canadian Journal of Earth Sciences 40: 13–25.
  • Qian, Y. and Bengtson, S. 1989. Palaeontology and biostratigraphy of the Early Cambrian Meishucunian Stage in Yunnan Province, South China. Fossils and Strata 24: 1–156.
  • Rice, M.E. 1993. Sipuncula. In: F.W. Harrison and M.E. Rice (eds.), Microscopic anatomy of invertebrates, Volume 12: Onychophora, Chilopoda, and Lesser Protostomata, 237–325. Wiley−Liss, New York.
  • Saiz Salinas, J.I. 1995. Sipuncula of the southeastern Weddell Sea (Antarctica). Polar Biology 15: 307–317.
  • Schmidt−Rhaesa, A. 1998. Phylogenetic relationships of the Nematomorpha—a discussion of current hypotheses. Zoologischer Anzeiger 236: 203–216.
  • Sergeev, V.N., Knoll, A.H., and Grotzinger, J.P. 1995. Paleobiology of the Mesoproterozoic Billyakh Group, Anabar Uplift, Northern Siberia. Paleontological Society Memoir 39. Journal of Paleontology 69 (Supplement to No. 1): 1–37.
  • Shirley, T.C. and Storch, V. 1999. Halicryptus higginsi n.sp. (Priapulida): a giant new species from Barrow, Alaska. Invertebrate Biology 118: 404–413.
  • Skovsted, C.B. and Peel, J.S. 2001. The problematic fossil Mongolitubulus from the Lower Cambrian of Greenland. Bulletin of the Geological Society of Denmark 48: 135–147.
  • Stephen, A.C. and Edmonds, S.J. 1972. The Phyla Sipuncula and Echiura. 528 pp. Trustees of the British Museum (Natural History), London.
  • Steiner, M. and Fatka, O. 1996. Lower Cambrian tubular micro− to macrofossils from the Paseky Shale of the Barrandian area (Czech Republic). Paläontologische Zeitschrift 70: 275–299.
  • Storch, V., Higgins, R.P., and Morse, M.P. 1989. Ultrastructure of the body wall of Meiopriapulus fijiensis(Priapulida). Transactions of the American Microscopical Society 108: 319–331.
  • Théel, H. 1911. Priapulids and sipunculids dredged by the Swedish Antarctic Expedition 1901–1903 and the phenomenon of bipolarity. Kungliga Svenska Vetenskaps Akademiens Handlingar 47: 1–36.
  • Topper, T.P., Skovsted, C.B., Brock, G.A., and Paterson, J.R. 2007. New bradoriids from the lower Cambrian Mernmerna Formation, South Australia: systematics, biostratigraphy and biogeography. Memoirs of the Association of Australasian Palaeontologists 33: 67–100.
  • Van der Land, J. 1970. Systematics, zoogeography, and ecology of the Priapulida. Zoologische Verhandelingen 112: 1–118.
  • Walcott, C.D. 1919. Cambrian geology and paleontology IV, No. 5—Middle Cambrian algae. Smithsonian Miscellaneous Collections 67: 217–260.
  • Wills, M.A. 1998. Cambrian and Recent disparity: the picture from priapulids. Paleobiology 24: 177–199.
  • Williams, A., Makay, S., and Cusack, M. 1992. Structure of the organophosphatic shell of the brachiopod Discina. Philosophical Transactions of the Royal Society of London B 337: 83–104.
  • Williams, A., Cusack, M., and Mackay, S. 1994. Collagenous chitinophosphatic shell of the brachiopod Lingula. Philosophical Transactions of the Royal Society of London B 346: 223–266.
  • Williams, S.H., Burden, E.T., and Mukhopadhyay, P.K. 1998. Thermal maturity and burial history of Paleozoic rocks in western Newfoundland. Canadian Journal of Earth Sciences 35: 1307–1322.
  • Yang, R.−D. and Yin, L.−M. 2001. Acritarch assemblages from the Early–Middle Cambrian Kaili Formation of east Guizhou Province and biostratigraphic implications. Acta Micropalaeontologica Sinica 18: 55–69.
  • Yang, R.−D., Mao, J.−R., and Zhao, Y.−L. 2001. New macroalgal fossils from Middle Cambrian Kaili Biota in Guizhou Province, China. Acta Botanica Sinica 43: 742–749.
  • Yin, L.−M. and Yang, R.−D. 1999. Early–Middle Cambrian acritarchs in the Kaili Formation from Taijiang County, Guizhou, China. Acta Palaeontologica Sinica 38: 66–78.
  • Yin, L., Zhu, M., Knoll, A.H., Yuan, X., Zhang, J., and Hu, J. 2007. Doushantuo embryos preserved inside diapause egg cysts. Nature 446: 661–663.
  • Yin, L., Yang, R., Peng, J., and Kong, F. 2009. New data regarding acritarch biostratigraphy from the Early–Middle Cambrian Kaili Formation in Chuandong, Guizhou Province, China. Progress in Natural Science 19: 107–114.
  • Yin, L.−M., Zhao, Y.−L., Yang, R.−D., and Peng, J. 2010. Acritarchs from the Early–Middle Cambrian Kaili Formation in the Wuliu−Zengjiaya Section, east Guizhou Province, China. Acta Palaeontologica Sinica 49: 164–173.
  • Zang, W.−L., Moczydłowska, M., and Jago, J.B. 2007. Early Cambrian acritarch assemblage zones in South Australia and global correlation. Memoirs of the Association of Australasian Palaeontologists 33: 141–177.
  • Zhao, Y.−L., Yuan, J.−L., Huang, Y.−Z., Mao, J.−R., Qian, Y., Zhang, Z.−H., and Gong, X.−Y. 1994a. Middle Cambrian Kaili Fauna in Taijiang, Guizhou [in Chinese, with English summary]. Acta Palaeontologica Sinica 33: 263–271.
  • Zhao, Y.−L., Qian, Y., and Li, X.−S. 1994b. Wiwaxia from Early–Middle Cambrian Kaili Formation in Taijing, Guizhou. Acta Palaeontologica Sinica 33: 359–366.
  • Zhao, Y.−L., Yuan, J.−L., Zhu, M.−Y., Yang, R.−D., Guo, Q.−J., Qian, Y., Huang, Y.−Z., and Pan, Y. 1999a. A progress report on research on the early Middle Cambrian Kaili Biota, Guizhou, PRC. Acta Palaeontologica Sinica 38 (Supplement): 1–14.
  • Zhao, Y.−L., Zhu, M.−Y., Guo, Q.−J., and Van Iten, H. 1999b. Worms from the Middle Cambrian Kaili Biota, Guizhou, PRC. Acta Palaeontologica Sinica 38 (Supplement): 79–87.
  • Zhao, Y., Yang, R., Yuan, J., Zhu, M., Guo, Q., Yang, X., and Tai, T. 2001. Cambrian stratigraphy at Balang, Guizhou Province, China: candidate section for a global unnamed series and stratotype section for the Taijiangian Stage. Palaeoworld 13: 189–208.
  • Zhao, Y., Zhu, M., Babcock, L.E., Yuan, J., Parsley, R.L., Peng, J., Yang, X., and Wang, Y. 2005. Kaili Biota: a taphonomic window on diversification of metazoans from the basal Middle Cambrian: Guizhou, China. Acta Geologica Sinica 79: 751–765.
  • Zhao, Y., Yuan, J., Peng, S., Babcock, L.E., Peng, J., Guo, Q., Lin, J., Tai, T., Yang, R., and Wang, Y. 2008. A new section of Kaili Formation (Cambrian) and a biostratigraphic study of the boundary interval across the undefined Cambrian Series 2 and Series 3 at Jianshan, Jianhe County, China with a discussion of global correlation based on the first appearance datum of Oryctocephalus indicus(Reed, 1910). Progress in Natural Science 18: 1549–1556.
  • Zhao, Y., Sumrall, C.D., Parsley, R.L., and Peng, J. 2010. Kailidiscus, a new plesiomorphic edrioasteroid from the basal Middle Cambrian Kaili Biota of Guizhou Province, China. Journal of Paleontology 84: 668–680.
  • Zhu, M.−Y., Erdtmann, B.−D., and Zhao, Y.−L. 1999. Taphonomy and palaeoecology of the early Middle Cambrian Kaili Lagerstätte in Guizhou, China. Acta Palaeontologica Sinica 38 (Supplement): 28–57.
  • Zhu, M.−Y., Babcock, L.E., and Peng, S.−C. 2006. Advances in Cambrian stratigraphy and paleontology: integrating correlation techniques, paleobiology, taphonomy and paleoenvironmental reconstruction. Palaeoworld 15: 217–222.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-e5d75859-9215-48f9-a476-8d1f3458c81d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.